天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類博士論文 >

自適應(yīng)視頻摘要算法研究

發(fā)布時(shí)間:2018-03-06 18:24

  本文選題:視頻摘要 切入點(diǎn):字典學(xué)習(xí) 出處:《中國科學(xué)技術(shù)大學(xué)》2017年博士論文 論文類型:學(xué)位論文


【摘要】:隨著數(shù)字錄像設(shè)備的普及以及網(wǎng)絡(luò)技術(shù)的發(fā)展,視頻逐漸成為人們記錄個(gè)人生活、并進(jìn)行溝通的一種重要形式。每一天都會(huì)產(chǎn)生大量的視頻,這些視頻內(nèi)容的范圍很廣,包括新聞、體育賽事、電視劇、綜藝節(jié)目以及自拍等等。這些海量的視頻,一方面給人們帶來巨大的觀看負(fù)擔(dān),全部看完非常耗時(shí);另一方面,也給視頻服務(wù)器、網(wǎng)站帶來了巨大的存儲(chǔ)壓力。因此,人們迫切需要一種方法能夠把視頻中的關(guān)鍵內(nèi)容提取出來進(jìn)行快速觀看、有效存儲(chǔ)。視頻摘要技術(shù)就是為了滿足這種需求而誕生的。近年來視頻摘要技術(shù)有了巨大發(fā)展,但還未成熟。本文的研究正是針對(duì)提高視頻摘要的性能展開的。本文對(duì)視頻摘要技術(shù)中存在的問題進(jìn)行了深入的研究。目前,視頻內(nèi)容種類繁多,內(nèi)容千差萬別;甚至在同一個(gè)視頻中,也可能會(huì)包含很多的場(chǎng)景、且這些場(chǎng)景之間的差異非常大。視頻數(shù)據(jù)的這種多樣性,給視頻摘要算法的適應(yīng)性提出了較高的要求。算法需要能夠根據(jù)視頻數(shù)據(jù)的內(nèi)容,自適應(yīng)地調(diào)節(jié)其提取特征的方式,進(jìn)行視頻分段,提取關(guān)鍵幀,組成視頻摘要。瞄準(zhǔn)這些需求,在已有的視頻摘要算法研究成果的基礎(chǔ)上,本文結(jié)合目前的字典學(xué)習(xí)和稀疏表示、深度學(xué)習(xí)等技術(shù),對(duì)視頻摘要中的特征提取、視頻分段和視頻內(nèi)容重要性評(píng)價(jià)等環(huán)節(jié)進(jìn)行了深入研究,提出了相應(yīng)的解決方法,并在標(biāo)準(zhǔn)數(shù)據(jù)集上進(jìn)行了測(cè)試,對(duì)結(jié)果進(jìn)行了分析。下面對(duì)本文的工作進(jìn)行簡(jiǎn)要介紹:1)提出了一種基于圖正則化稀疏編碼的視頻摘要算法。傳統(tǒng)的視頻摘要算法在特征提取環(huán)節(jié),往往直接按照某種事先制定好的規(guī)則來計(jì)算特征值。但是由于視頻內(nèi)容較為多樣,這種事先制定好規(guī)則的提取特征方式,往往不能夠準(zhǔn)確描述多樣的視頻內(nèi)容。為了提高算法的適應(yīng)能力,我們使用字典學(xué)習(xí)和稀疏表示方法,用無監(jiān)督特征學(xué)習(xí)的方式,根據(jù)視頻內(nèi)容,自適應(yīng)地學(xué)習(xí)出視頻內(nèi)容對(duì)應(yīng)的合適的特征空間,對(duì)視頻進(jìn)行特征提取。通過采用這樣的方法,視頻特征能夠更加準(zhǔn)確地描述其內(nèi)容,且具有較強(qiáng)的場(chǎng)景適應(yīng)性。2)提出了一種基于自適應(yīng)閾值的視頻摘要算法。在提取了視頻幀的特征之后,需要進(jìn)行視頻分段,獲得視頻的結(jié)構(gòu)信息,作為生成視頻摘要的參考,F(xiàn)有的視頻分段算法,采用的是度量視頻幀之間的相似度、用固定閾值的方式來對(duì)視頻進(jìn)行分段。然而,由于視頻數(shù)據(jù)的多樣性,同一個(gè)固定閾值很難在不同視頻中達(dá)到理想效果。這是因?yàn)?在不同的視頻中,其視頻內(nèi)容的變化劇烈程度不同,因此其最優(yōu)的分割閾值也應(yīng)該不同。為了能夠增強(qiáng)分段算法的適應(yīng)性,文中提出了一種基于自適應(yīng)閾值的視頻摘要算法。該算法能夠根據(jù)每個(gè)視頻中視頻幀變化的劇烈程度,自適應(yīng)地調(diào)整視頻分段的閾值。這樣增強(qiáng)了算法的適應(yīng)能力,有助于提高所生成的視頻摘要的質(zhì)量。3)提出了一種基于自動(dòng)編碼機(jī)的視頻摘要算法。對(duì)視頻進(jìn)行了分段、獲得了視頻結(jié)構(gòu)信息之后,需要確定不同視頻段的重要性程度,并將最重要的部分提取出來作為視頻摘要。重要性評(píng)價(jià)是一個(gè)非常重要且復(fù)雜的問題。一方面,其評(píng)價(jià)結(jié)果直接影響著視頻摘要的結(jié)果:另一方面,視頻內(nèi)容的重要性評(píng)價(jià)比較主觀和抽象,很難用一組公式去進(jìn)行概括和總結(jié)。本文首先通過視頻標(biāo)題來收集網(wǎng)絡(luò)上和視頻內(nèi)容相關(guān)的圖片;然后,用自動(dòng)編碼機(jī)來學(xué)習(xí)圖片和視頻中共有的模式信息;最后,用訓(xùn)練好的編碼機(jī)模型,對(duì)視頻內(nèi)容進(jìn)行重要性評(píng)價(jià),依之生成視頻摘要。本文的方法,通過使用深度網(wǎng)絡(luò)對(duì)網(wǎng)絡(luò)圖片中的信息進(jìn)行挖掘,能了解大眾對(duì)某些事物的判斷,因而能夠更加準(zhǔn)確地判斷視頻內(nèi)容的重要性。4)在實(shí)驗(yàn)環(huán)節(jié),我們將以上提出的方法,在VSUMM,Youtube和SumMe等標(biāo)準(zhǔn)數(shù)據(jù)集上進(jìn)行了測(cè)試,并進(jìn)行了詳細(xì)的分析。結(jié)果表明,我們的方法在這些數(shù)據(jù)集上得到了更好的結(jié)果,生成了比現(xiàn)有方法質(zhì)量更高的視頻摘要。
[Abstract]:With the rapid development of the popularity of digital video equipment and network technology, video recording has gradually become an important form of personal life, and communicate. Every day will produce a large number of video, the video content range is very wide, including news, sports, television dramas, variety shows and the self and so on. The massive video, on the one hand to bring huge burden to watch, read all very time-consuming; on the other hand, but also to the video server, the website has brought huge storage pressure. Therefore, it is an urgent need for a method to extract the key contents of the video quickly watch video abstract technology is the effective storage. In order to meet the demands of birth. In recent years, video abstract technology has made great progress, but still immature. This study is aimed at improving the performance of the video. This paper studied the existing problems in the video abstract technology. At present, many kinds of video content, content is different; even in the same video, may also contain a lot of scenes, and the difference between these scenarios is very large. The video data diversity, put forward higher requirements to abstract video adaptive algorithm. The algorithm needs to be able to according to the content of the video data, which adaptively adjust the feature extraction method, video segmentation, key frame extraction, video composition abstract. Aimed at these demands, the existing research results as the frequency algorithm on the basis of combining the dictionary learning and sparse representation, technology deep learning, feature extraction of video abstract, video segmentation and video content importance evaluation and other aspects of the in-depth study, put forward the corresponding solutions, and in the standard Data sets were tested, the results were analyzed. The work of this paper are briefly introduced: 1) proposed a video summarization algorithm of graph regularized sparse encoding based on traditional video summarization algorithm in the feature extraction step, often directly according to some prior made good rules to calculate the eigenvalues. Because the video content is more diverse, extract the features of this pre established rules, and often can not accurately describe the variety of video content. In order to improve the algorithm's adaptability, we use a dictionary learning and sparse representation method for unsupervised feature learning methods, according to the video content, adaptive learning space suitable video features corresponds to the content, the video feature extraction. By using this method, the video features can more accurately describe the content, and has strong adaptation to the scene .2) this paper proposes a video summarization algorithm based on adaptive threshold. After extracting the features of video frames, the need for video segmentation, obtain the structure information of video, video abstraction as reference. The existing video segmentation algorithm is used to measure the similarity between video frames, using a fixed threshold method segmentation of the video. However, due to the diversity of video data, with a fixed threshold is difficult to achieve the desired effect in different video. This is because, in different video, the video content is not the same degree of change, so the optimal segmentation threshold should also be different. In order to improve the segmentation algorithm the adaptability, this paper proposes a video summarization algorithm based on adaptive threshold. The algorithm according to the severity of the video in each video frame change, adaptive adjustment of video segmentation threshold Value. This enhances the algorithm's ability to adapt to the quality,.3 helps to improve the generated video) Abstract This paper proposes a video encoding algorithm based on the automatic machine. The video segment, after obtaining the video information, to determine the importance degree of different video segments, and will be the most important as part of the extract video summary. The importance of evaluation is a very important and complicated problem. On the one hand, the evaluation results directly affect the result of video abstract: on the other hand, to evaluate the importance of video content is subjective and abstract, it is difficult to use a formula to summarize. Firstly, through the video title to collect the network video content and related images; then, using automatic encoding machine to learn pictures and videos of common mode information; finally, use the trained model encoding machine, video content into For the importance of evaluation, according to the generated video abstract. This method of mining depth through the use of network information on the network image, to understand public opinion about some things, so it can more accurately judge the importance of video content.4) in the experiment, we will put forward the above method in VSUMM, Youtube and SumMe standard data sets were tested and analyzed in detail. The results show that our method on these data sets to get better results, generating higher than the existing methods of quality video abstract.

【學(xué)位授予單位】:中國科學(xué)技術(shù)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41

【相似文獻(xiàn)】

相關(guān)博士學(xué)位論文 前1條

1 李佳桐;自適應(yīng)視頻摘要算法研究[D];中國科學(xué)技術(shù)大學(xué);2017年

,

本文編號(hào):1575969

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1575969.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶6fba3***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
欧美日韩欧美国产另类| 又大又紧又硬又湿又爽又猛| 国产成人精品午夜福利av免费| 国产又黄又猛又粗又爽的片| 欧美精品久久男人的天堂| 麻豆视频传媒入口在线看| 日本免费一级黄色录像| 人体偷拍一区二区三区| 东北老熟妇全程露脸被内射| 欧美成人国产精品高清| 狠狠干狠狠操亚洲综合| 午夜国产成人福利视频| 高清不卡一卡二卡区在线| 亚洲欧美精品伊人久久| 女厕偷窥一区二区三区在线| 四季精品人妻av一区二区三区| 日韩精品一区二区三区含羞含羞草| 91欧美视频在线观看免费| 日韩国产欧美中文字幕| 久久精品色妇熟妇丰满人妻91| 亚洲欧美黑人一区二区| 东京热加勒比一区二区三区 | 亚洲最新av在线观看| 麻豆蜜桃星空传媒在线观看| 99视频精品免费视频播放| 国产免费一区二区三区av大片| 国产精品涩涩成人一区二区三区 | 激情五月天免费在线观看| 日韩欧美二区中文字幕| 国产又猛又大又长又粗| 91在线爽的少妇嗷嗷叫| 国产精品久久三级精品| 日本精品理论在线观看| 国产精品一区日韩欧美| 亚洲精品偷拍一区二区三区| 日韩中文字幕狠狠人妻| 欧美激情区一区二区三区| 成年男女午夜久久久精品| 太香蕉久久国产精品视频| 一区二区三区亚洲天堂| 亚洲国产天堂av成人在线播放|