高性能白色磷光有機(jī)電致發(fā)光器件的研究
本文關(guān)鍵詞:高性能白色磷光有機(jī)電致發(fā)光器件的研究 出處:《電子科技大學(xué)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 有機(jī)電致發(fā)光器件 非摻雜超薄層 黃色磷光染料 藍(lán)色磷光染料 溶劑化效應(yīng)
【摘要】:有機(jī)電致發(fā)光器件(Organic light-emitting devices,OLEDs)具有體輕質(zhì)薄、驅(qū)動(dòng)電壓低、視角寬、高亮度、高效率、耐高低溫等優(yōu)點(diǎn),特別的是OLED技術(shù)可以實(shí)現(xiàn)柔性和透明顯示。其中,白光OLED在顯示、照明和液晶顯示器背光源方面具有潛在的巨大應(yīng)用,得到了世界范圍內(nèi)科研機(jī)構(gòu)和企業(yè)的極大重視,是當(dāng)前的研究熱點(diǎn)之一。在白光OLED器件結(jié)構(gòu)中,有機(jī)發(fā)光材料是其中一個(gè)最重要的成分。然而,有機(jī)發(fā)光材料容易聚集,導(dǎo)致發(fā)光猝滅,從而降低發(fā)光效率。為了解決這個(gè)問(wèn)題,通常將發(fā)光染料摻雜在主體材料中,組成主客體結(jié)構(gòu)。因?yàn)橹骺腕w的比例難以控制,采用這種結(jié)構(gòu)使得工藝變得復(fù)雜,器件重復(fù)性低,良品率低,不利于OLED大面積生產(chǎn)。本論文,采用單層、雙層、多層非摻雜超薄層結(jié)構(gòu)的黃色磷光染料bis[2-(4-tertbutylphenyl)benzothiazolato-N,C2’]iridium(acetylacetonate),即(tbt)2Ir(acac)發(fā)光層,制備一系列白色OLED器件,簡(jiǎn)化了器件結(jié)構(gòu)和工藝。從器件的結(jié)構(gòu)設(shè)計(jì)、性能優(yōu)化和理論分析方面進(jìn)行深入研究,獲得了高性能白光OLED器件。采用溶液方法制備OLED器件,研究藍(lán)色磷光染料bis[(4,6-difluorophenyl)-pyridinato-N,C2’](picolinate)iridium(III)(FIrpic)光譜波峰變化的影響因素。本論文的主要內(nèi)容分為以下四個(gè)方面:1.采用單層非摻雜超薄層結(jié)構(gòu)(也被稱為Delta發(fā)光層)的(tbt)2Ir(acac)黃光層,從多方面開(kāi)展器件優(yōu)化工作,研究影響WOLED器件性能的主要因素。其一,改變藍(lán)光層摻雜濃度和黃光層厚度。結(jié)果表明,當(dāng)FIrpic摻雜濃度為8%,(tbt)2Ir(acac)厚度為1 nm時(shí),器件性能最好。其二,改變藍(lán)光層主體材料,比較非摻雜黃光層和摻雜黃光層結(jié)構(gòu),制備了四種白光OLED器件,即N,N’-dicarbazolyl-3,5-benzene(mCP):FIrpic/(tbt)2Ir(acac)和mCP:FIrpic/mCP:(tbt)2Ir(acac),以及(tbt)2Ir(acac)/p-bis(triphenylsilyly)benzene(UGH2):FIrpic和UGH2:(tbt)2Ir(acac)/UGH2:FIrpic。與摻雜結(jié)構(gòu)的器件相比,基于非摻雜黃光層結(jié)構(gòu)的mCP:FIrpic/(tbt)2Ir(acac)和(tbt)2Ir(acac)/UGH2:FIrpic器件,獲得了最好的電學(xué)性能:最大亮度分別為41790 cd/m2和24700 cd/m2,最大電流效率分別為58.8 cd/A和65.3cd/A,最大外量子效率分別為18.77%和19.04%,以及穩(wěn)定的白光發(fā)光。其三,改變藍(lán)光層和黃光層的相對(duì)位置,結(jié)果表明結(jié)構(gòu)為(tbt)2Ir(acac)/mCP:FIrpic和UGH2:FIrpic/(tbt)2Ir(acac)的白光OLED器件,主要為藍(lán)色發(fā)光。從而說(shuō)明,由于藍(lán)光層主體材料的載流子傳輸特性不同,黃光和藍(lán)光發(fā)光層的相對(duì)位置對(duì)器件發(fā)光顏色起到重要作用。2.研究了基于雙層非摻雜超薄層結(jié)構(gòu)的(tbt)2ir(acac)發(fā)光層,結(jié)構(gòu)為4,4’-cyclohexylidenebis[n,n-bis(4-methylphenyl)benzenamine](tapc)/(tbt)2ir(acac)/mcp:firpic/(tbt)2ir(acac)/4,7-diphenyl-1,10-phenanthroline(bphen)的白光oled器件。分析表明,靠近陽(yáng)極的黃色發(fā)光層主要是捕獲載流子作用,靠近陰極的黃色發(fā)光層貢獻(xiàn)黃色發(fā)光。通過(guò)在陽(yáng)極加入5nm薄層金作為修飾層,獲得了色穩(wěn)定好的白光器件。其次,采用多個(gè)非摻雜超薄層的黃光和藍(lán)光發(fā)光層,制備了量子阱結(jié)構(gòu)的白光oled,優(yōu)化勢(shì)壘層的材料選擇及其厚度來(lái)提高器件性能。結(jié)果表明,選用6nm的mcp和2,2’,2’’-(1,3,5-benzenetriyl)-tris(1-phenyl-1-h-benzimidazole)(tpbi)作為勢(shì)壘層,能夠獲得較為平衡的黃光和藍(lán)光發(fā)光強(qiáng)度,實(shí)現(xiàn)白光oled器件;谌龑臃菗诫s超薄層的紅綠藍(lán)結(jié)構(gòu)的白光器件表明,非摻雜超薄層對(duì)器件內(nèi)部載流子傳輸和調(diào)控起到重要作用。3.采用載流子傳輸特性不同的tapc和tpbi作為黃光(tbt)2ir(acac)發(fā)光層和藍(lán)光firpic發(fā)光層的主體材料,制備雙層摻雜結(jié)構(gòu)的白光oled器件。在雙發(fā)光層之間選擇加入不同的間隔層對(duì)器件進(jìn)行優(yōu)化,并研究了間隔層材料的不同特性對(duì)器件性能的影響。當(dāng)tapc為主體時(shí),與tpbi、tris(2,4,6-trimethyl-3-(pyridin3-yl)phenyl)borane(3tpymb)相比,bphen是最優(yōu)的間隔層。采用bphen間隔層的器件,獲得最大電流效率11.3cd/a和cie坐標(biāo)(0.394,0.435)的穩(wěn)定白光。當(dāng)tpbi為主體時(shí),與間隔層tapc、mcp、tris(4-carbazoyl-9-ylphenyl)amine(tcta)相比,采用4,4’-bis(carbazol-9-yl)biphenyl(cbp)間隔層的器件獲得了最大電流效率18.1cd/a,以及cie坐標(biāo)為(0.284,0.333)的相對(duì)穩(wěn)定白光。分析表明,間隔層的載流子遷移率、三線態(tài)能級(jí)、能帶寬度是對(duì)器件性能起到?jīng)Q定性的重要影響因素。分別采用bphen和cbp間隔層,能夠促進(jìn)載流子平衡,擴(kuò)展激子復(fù)合區(qū)域,同時(shí)還可以改進(jìn)發(fā)光層之間的能量傳遞作用,從而獲得性能優(yōu)化的白光oled器件。進(jìn)一步,通過(guò)磷光染料敏化方法,研究表明發(fā)光層中主體三線態(tài)激子在無(wú)勢(shì)壘情況下,會(huì)向鄰近有機(jī)層擴(kuò)散。通過(guò)引入引入激子阻擋層,將激子限制在發(fā)光層,能夠顯著地提高器件效率。4.溶液方法制備了藍(lán)光和白光oled器件,觀察到firpic電致發(fā)光光譜波峰的變化,并探究原因。溶液加工型藍(lán)光器件中,改變firpic摻雜濃度和發(fā)光層溶劑,發(fā)現(xiàn)當(dāng)firpic摻雜濃度高于20%和采用極性較高的溶劑時(shí),firpic光譜中在長(zhǎng)波長(zhǎng)處的肩峰強(qiáng)度逐漸增強(qiáng)并高于在短波長(zhǎng)處的主峰強(qiáng)度。理論分析可知,firpic分子和極性溶劑分子相互作用產(chǎn)生的溶劑化效應(yīng),影響了firpic激發(fā)態(tài)與基態(tài)之間的能量差,從而導(dǎo)致firpic光譜中主峰和肩峰的相對(duì)強(qiáng)度發(fā)生變化。制備了firpic和(tbt)2ir(acac)的溶液加工型白光oled器件,分析電致發(fā)光光譜可知,firpic光譜波峰變化與發(fā)光層厚度無(wú)關(guān),進(jìn)一步證實(shí)了溶劑化效應(yīng)對(duì)FIrpic光譜波峰的作用。同時(shí),溶液方法也獲得了光電特性較好的白色發(fā)光OLED器件。綜上所述,本論文采用非摻雜的單層、雙層、多層超薄發(fā)光層結(jié)構(gòu),實(shí)現(xiàn)了高性能白光OLED器件。同時(shí),對(duì)溶液加工型OLED器件中FIrpic光譜波峰變化的分析,對(duì)開(kāi)發(fā)新型高效發(fā)光染料及其在溶液加工型OLED中的應(yīng)用打下了結(jié)構(gòu)和工藝基礎(chǔ)。
[Abstract]:Organic electroluminescent devices (Organic, light-emitting devices, OLEDs) with light weight, low driving voltage, wide viewing angle, high brightness, high efficiency, high temperature and other advantages, especially the OLED technology can achieve flexible and transparent display. Among them, the white OLED has great application potential in display, lighting and backlight for liquid crystal display that has been the worldwide attention of research institutions and enterprises, is one of the hot topics. In the white OLED device, organic luminescent material is one of the most important components. However, organic light-emitting materials are easy to gather, resulting in luminescence quenching, thereby reducing the luminous efficiency. In order to solve this problem, usually the luminescent dye doped in the main material, the structure of subject and object. Because the proportion of the subject and the object is difficult to control the structure so that the process becomes complex, low duplication devices, good The rate is low, is not conducive to the production of large area OLED. In this paper, the single, double, multilayer non doped ultra thin structure of the Yellow phosphorescent dye bis[2- (4-tertbutylphenyl) benzothiazolato-N, C2 (acetylacetonate), namely]iridium (TBT) 2Ir (ACAC) light emitting layer, preparing a series of white OLED devices, the device is simplified the structure and process. From the design of the device structure, performance optimization and theoretical analysis of thorough research, to obtain the high performance of white OLED devices. The solution preparation method of OLED device of blue phosphorescent dye bis[(4,6-difluorophenyl) -pyridinato-N, C2 '] (picolinate) Iridium (III) (FIrpic) factors affecting the spectral peak changes the main content of this paper is divided into the following four aspects: 1. the single non doped ultra thin layer structure (also known as the Delta light emitting layer) of the (TBT) 2Ir (ACAC) Huang Guangceng, from many aspects to carry out device optimization work, research The main factors affecting WOLED device performance. First, change the blue and yellow light layer doped layer thickness. The results show that when the concentration of FIrpic is 8% (TBT), 2Ir (ACAC) thickness is 1 nm, the performance is the best. Second, change the material layer blue body, compared with the non doped layer of yellow light the yellow light and the doped layer structure, four kinds of white OLED devices, the preparation of N, N '-dicarbazolyl-3,5-benzene (mCP): FIrpic/ (TBT) 2Ir (ACAC) and mCP:FIrpic/mCP: (TBT) 2Ir (ACAC), and (TBT) 2Ir (ACAC) /p-bis (triphenylsilyly) benzene (UGH2): FIrpic and UGH2: (TBT) 2Ir (ACAC) compared with the device /UGH2:FIrpic. and doping structure, non doped yellow light layer structure based on mCP:FIrpic/ (TBT) 2Ir (ACAC) and (TBT) 2Ir (ACAC) /UGH2:FIrpic device, obtained the best electrical properties: the maximum brightness is 41790 cd/m2 and 24700 cd/m2, the maximum current efficiency respectively. 58.8 cd/A and 65.3cd/A, the most External quantum efficiency were 18.77% and 19.04%, and the stability of the white light. Third, change the relative position of yellow light and blue light layer layer, results show that the structure of (TBT) 2Ir (ACAC) /mCP:FIrpic and UGH2:FIrpic/ (TBT) 2Ir (ACAC) of the white OLED devices, mainly for blue light. Therefore, as the carrier the transmission characteristics of blue layer body of different materials, the luminescence color plays an important role in the study of.2. based on double doped ultra thin structure of the yellow and blue light emitting layer of the relative position of (TBT) 2ir (ACAC) emitting layer structure of 4,4 '-cyclohexylidenebis[n, N-bis (4-methylphenyl) benzenamine] (tapc) / (TBT (2ir) ACAC) /mcp:firpic/ (TBT) 2ir (ACAC) /4,7-diphenyl-1,10-phenanthroline (bphen) of the white OLED devices. The results show that, close to the anode yellow light-emitting layer is the main carrier trapping effect near the cathode yellow light-emitting layer contribution Yellow light. By adding 5nm thin gold as anode modification layer, obtained good color stability of white light devices. Secondly, using a plurality of non doped ultra thin yellow light and blue light emitting layer, white OLED quantum well structure was prepared, improving the performance of the device to optimize the material selection of barrier layer and its thickness. Show that the selection of 6nm MCP and 2,2 ', 2' '- (1,3,5-benzenetriyl) -tris (1-phenyl-1-h-benzimidazole) (tpbi) as a barrier layer to obtain yellow light and blue light intensity is more balanced, the white OLED devices. The three layer structure of red green and blue light emitting devices ultra thin undoped that based on non doped ultra thin layer on the device internal carrier transmission and played an important role in regulation of.3. by the carrier transport characteristics of different tapc and tpbi as the yellow light (TBT) 2ir (ACAC) light emitting material layer and the main body of the blue firpic light emitting layer, double layer preparation White OLED devices doped structure. In the double emitting layer between the spacer layer of different join devices were optimized, and the effects of the different characteristics of interlayer materials on the performance of the device. When the main body is tapc, and tpbi, tris (2,4,6-trimethyl-3- (pyridin3-yl) phenyl) borane (3tpymb), bphen is a spacer the optimal layer. By using the device bphen spacer, the maximum current efficiency of 11.3cd/a and CIE coordinates (0.394,0.435) stable white light. When the tpbi as the main body, tapc, and MCP spacer layer (4-carbazoyl-9-ylphenyl), Tris amine (TCTA) compared with 4,4 '-bis (carbazol-9-yl) biphenyl (CBP) device spacer the maximum current efficiency of 18.1cd/a, and CIE coordinates (0.284,0.333) the relative stability of white light. The analysis shows that the carrier mobility of the spacer, three line state level, band width is an important influence on the performance of the device plays a decisive The influencing factors respectively. Using bphen and CBP interlayer, can promote the balanced carrier, expand exciton recombination region, but also can improve the luminous layer between the energy transfer function, so as to obtain white OLED device performance optimization. Further, the phosphorescent dye sensitization method, research shows that the main light emitting layer three excitons in barrier free under the condition, will spread to nearby the organic layer is introduced. By introducing the exciton blocking layer will limit the exciton in the light emitting layer, can significantly improve the efficiency of the device.4. solution method for blue and white OLED devices were prepared, observed changes of firpic electroluminescent spectrum peaks, and explore the reasons. The solution processing type Blu ray devices. The change of firpic concentration and light emitting layer solvent, when firpic doping concentration is higher than 20% and the high polar solvent, the firpic spectra in the wavelength of the acromion strength and enhanced gradually The main peak strength is higher than that in short wavelength. Theoretical analysis shows that the solvent effect of firpic molecules and polar solvent molecules caused by the interaction of firpic between excited state and ground state energy difference effect, resulting in changes in the relative intensity of the main peak in the firpic spectrum and the acromion. Firpic and preparation of 2ir (ACAC (TBT) the white OLED) solution processing device, analysis of electroluminescence spectra, firpic spectra and luminescence peak changes independent of the thickness, further confirmed the solvent effect of FIrpic spectral peak effect. At the same time, the solution method can obtain a better photoelectric properties of white light emitting device OLED. In summary, this paper uses a single, non doping the double, multilayer light-emitting layer structure, to achieve high performance of white OLED devices. At the same time, analysis of the solution processing device of OLED FIrpic spectral peak change, to develop new and efficient The optical dyes and their applications in the solution processing OLED have laid a foundation for the structure and process.
【學(xué)位授予單位】:電子科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:TN383.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張正法;唐振方;葉長(zhǎng)江;;發(fā)光層厚度對(duì)有機(jī)電致發(fā)光器件性能的影響[J];科學(xué)技術(shù)與工程;2006年01期
2 李紅燕;張玉祥;張宏科;王水俊;;采用雙發(fā)光層制作白色有機(jī)電致發(fā)光器件的工藝研究[J];液晶與顯示;2007年01期
3 王立忠;孟昭暉;叢林;韓強(qiáng);王廣德;胡乃香;;發(fā)光層厚度比對(duì)有機(jī)電致發(fā)光器件性能的影響[J];山東交通學(xué)院學(xué)報(bào);2008年04期
4 李建豐;孫碩;歐谷平;張福甲;;單發(fā)光層結(jié)構(gòu)的白色有機(jī)電致發(fā)光器件的研究[J];功能材料;2008年03期
5 路林;廖英杰;劉記忠;魏斌;張建華;;高效率和色穩(wěn)定性的雙超薄發(fā)光層的黃光有機(jī)電致發(fā)光器件[J];光譜學(xué)與光譜分析;2010年08期
6 丁桂英;王立忠;韓強(qiáng);常喜;黃濤;姜文龍;;一種新的多發(fā)光層白色有機(jī)電致發(fā)光器件[J];光電子.激光;2011年01期
7 劉衛(wèi)民;;在玻璃平面低壓汞蒸汽放電燈中形成發(fā)光層的方法[J];發(fā)光快報(bào);1988年Z1期
8 王洪梅;王雙;肖心明;王宇;孫東殊;楊?yuàn)檴?姜文龍;汪津;;高效率雙發(fā)光層結(jié)構(gòu)白色熒光有機(jī)電致發(fā)光器件[J];半導(dǎo)體光電;2013年06期
9 張曉波;曹進(jìn);委福祥;蔣雪茵;張志林;朱文清;許少鴻;;發(fā)光層厚度變化的高效紅色有機(jī)電致磷光器件[J];物理學(xué)報(bào);2006年01期
10 程寶妹;鄧振波;徐登輝;肖靜;;周期性多發(fā)光層結(jié)構(gòu)單色有機(jī)電致發(fā)光器件的研究[J];光電子.激光;2007年08期
相關(guān)會(huì)議論文 前5條
1 賈勇;鄧振波;陳征;;發(fā)光層中薄層的插入對(duì)有機(jī)電致發(fā)光器件性能的影響[A];第11屆全國(guó)發(fā)光學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2007年
2 葉俊;鄭才俊;張曉宏;;高效熒光/磷光雜化白光OLED材料與器件[A];中國(guó)化學(xué)會(huì)第28屆學(xué)術(shù)年會(huì)第11分會(huì)場(chǎng)摘要集[C];2012年
3 王月飛;;LED用于照明的散熱、配光及光色的分析[A];海峽兩岸第十五屆照明科技與營(yíng)銷研討會(huì)專題報(bào)告暨論文集[C];2008年
4 朱德喜;葉輝;高軍;劉旭;;聚合物電致發(fā)光器件中絕緣層對(duì)陰極的影響及計(jì)算模型[A];中國(guó)光學(xué)學(xué)會(huì)2006年學(xué)術(shù)大會(huì)論文摘要集[C];2006年
5 朱德喜;葉輝;高軍;劉旭;;聚合物電致發(fā)光器件中陰極絕緣層的影響及計(jì)算模型[A];光子科技創(chuàng)新與產(chǎn)業(yè)化——長(zhǎng)三角光子科技創(chuàng)新論壇暨2006年安徽博士科技論壇論文集[C];2006年
相關(guān)重要報(bào)紙文章 前4條
1 賈婧;新型高效“冷光源”填補(bǔ)國(guó)內(nèi)節(jié)能空白[N];科技日?qǐng)?bào);2007年
2 許偉邋王堅(jiān);OLED:顯示性能優(yōu)異 研發(fā)尚待深入[N];中國(guó)電子報(bào);2007年
3 羅清岳;無(wú)機(jī)EL發(fā)展及技術(shù)狀況(上)[N];電子資訊時(shí)報(bào);2006年
4 王迅;長(zhǎng)春應(yīng)化所制備出高效穩(wěn)定的全熒光型白光OLED[N];中國(guó)有色金屬報(bào);2009年
相關(guān)博士學(xué)位論文 前10條
1 劉勝?gòu)?qiáng);白光有機(jī)電致發(fā)光器件的光學(xué)仿真與性能研究[D];電子科技大學(xué);2016年
2 趙娟;高性能白色磷光有機(jī)電致發(fā)光器件的研究[D];電子科技大學(xué);2016年
3 于建寧;基于熒光與磷光復(fù)合的白光有機(jī)電致發(fā)光器件研究[D];上海大學(xué);2013年
4 苗艷勤;高色穩(wěn)定性熒光/磷光白光有機(jī)電致發(fā)光器件的結(jié)構(gòu)設(shè)計(jì)及性能研究[D];太原理工大學(xué);2015年
5 吳清洋;互補(bǔ)色白光有機(jī)電致發(fā)光器件及其色穩(wěn)定性研究[D];吉林大學(xué);2013年
6 趙波;量于阱結(jié)構(gòu)和熱活化延遲熒光WOLED的研究[D];中國(guó)科學(xué)院研究生院(長(zhǎng)春光學(xué)精密機(jī)械與物理研究所);2015年
7 宋丹丹;磷光OLEDs的效率和效率roll-off特性的影響因素及改進(jìn)方法[D];北京交通大學(xué);2011年
8 張穎芳;藍(lán)色和白色有機(jī)電致發(fā)光器件的研究[D];吉林大學(xué);2006年
9 丁邦東;稠環(huán)芳烴材料在有機(jī)電致發(fā)光器件中的應(yīng)用研究[D];上海大學(xué);2009年
10 林華平;有機(jī)電致發(fā)光器件及發(fā)光機(jī)理的研究[D];上海大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 謝莉莎;高效有機(jī)發(fā)光二極管的研究[D];北京化工大學(xué);2015年
2 蘇彥新;白光有機(jī)電致發(fā)光器件的性能研究[D];電子科技大學(xué);2015年
3 向東旭;基于MADN:DPAVBi摻雜體系的藍(lán)光與白光有機(jī)發(fā)光二極管的研究[D];蘭州大學(xué);2015年
4 郭立元;基于C^N=N結(jié)構(gòu)的黃/橙光銥配合物材料設(shè)計(jì)/合成及其OLED/WOLED研究[D];南京郵電大學(xué);2015年
5 葉靜芳;基于激發(fā)態(tài)內(nèi)質(zhì)子轉(zhuǎn)移的聚集發(fā)光化合物二元互補(bǔ)色單發(fā)光層WOLED的研究[D];南京郵電大學(xué);2015年
6 石鑫棟;高效率頂發(fā)射有機(jī)發(fā)光二極管的理論仿真與實(shí)驗(yàn)研究[D];上海交通大學(xué);2015年
7 陳蘇杰;載流子傳輸特性對(duì)基于銥化合物磷光有機(jī)電致發(fā)光器件的影響[D];電子科技大學(xué);2011年
8 楊倩;基于Ir(ppy)_3的有機(jī)電致磷光器件結(jié)構(gòu)優(yōu)化設(shè)計(jì)及其性能研究[D];太原理工大學(xué);2012年
9 牛霞;基于新型藍(lán)光材料的白色有機(jī)電致發(fā)光器件的研究[D];天津理工大學(xué);2006年
10 魯建華;基于雙極傳輸層和磷光敏化層的白色有機(jī)電致發(fā)光器件[D];吉林大學(xué);2009年
,本文編號(hào):1363671
本文鏈接:http://sikaile.net/shoufeilunwen/xxkjbs/1363671.html