智能視覺物聯(lián)網(wǎng)中視覺特性的提取及視覺標(biāo)簽的建立
發(fā)布時(shí)間:2019-06-21 02:41
【摘要】:智能視覺物聯(lián)網(wǎng)(IVIOT),即具有視覺感知功能的物聯(lián)網(wǎng)。它通常由四個(gè)部分組成:視覺傳感器、視覺信息傳輸、視覺信息處理和物聯(lián)網(wǎng)應(yīng)用。智能視覺物聯(lián)網(wǎng)是物聯(lián)網(wǎng)的升級(jí),它將圖像傳感器傳來的圖像,利用圖像處理技術(shù)或計(jì)算機(jī)視覺技術(shù)等,進(jìn)行智能化識(shí)別、定位、跟蹤,便于我們對(duì)人、車、物進(jìn)行智能化管理。智能視覺物聯(lián)網(wǎng)中最重要的一個(gè)核心技術(shù)就是視覺標(biāo)簽技術(shù)。它可以將視頻或圖像中的內(nèi)容進(jìn)行識(shí)別、理解和分類,并為其"貼標(biāo)簽",并將被識(shí)別對(duì)象所對(duì)應(yīng)的標(biāo)簽信息內(nèi)容顯示出來。本文根據(jù)課題需要,設(shè)計(jì)并實(shí)現(xiàn)了一套基于人、車、物的視覺標(biāo)簽系統(tǒng)。系統(tǒng)主要包括人物識(shí)別模塊,車輛識(shí)別模塊,物體識(shí)別模塊。在這個(gè)系統(tǒng)中,可以根據(jù)用戶需求,選擇一幅圖片,系統(tǒng)會(huì)自動(dòng)識(shí)別該圖片中的內(nèi)容,并顯示與之相關(guān)的其它圖片以及其信息標(biāo)簽。在人物識(shí)別模塊,本文基于人臉識(shí)別技術(shù),采用主成分分析(Principal Component Analysis,PCA)算法和支持向量機(jī)(Support Vector Machine,SVM)算法相結(jié)合的方法進(jìn)行人臉識(shí)別。首先利用PCA算法進(jìn)行特征提取和降維,再利用SVM算法進(jìn)行分類和識(shí)別。在車輛識(shí)別模塊,本文采用基于顏色的車牌識(shí)別算法,對(duì)智能視覺物聯(lián)網(wǎng)中獲得的圖像中的車輛,進(jìn)行車牌定位、車牌校正、字符分割、字符識(shí)別等處理,最終識(shí)別出車牌號(hào)碼。在物體識(shí)別模塊,本文采用基于卷積神經(jīng)網(wǎng)絡(luò)的物體識(shí)別方法,完成了同類物體的識(shí)別(本文以水杯為例)。最后,本文將三個(gè)模塊整合到一個(gè)系統(tǒng)中,使人、車、物一一對(duì)應(yīng),開發(fā)了一套具有視覺標(biāo)簽功能的人、車、物智能識(shí)別系統(tǒng)。實(shí)驗(yàn)結(jié)果表明,該系統(tǒng)具有很好的性能,能夠滿足用戶的基礎(chǔ)需求。
[Abstract]:Intelligent visual Internet of things (IVIOT),) is the Internet of things with visual perception function. It usually consists of four parts: visual sensor, visual information transmission, visual information processing and Internet of things application. Intelligent vision Internet of things is an upgrade of the Internet of things. It uses image processing technology or computer vision technology to intelligently identify, locate and track the image from the image sensor, which is convenient for us to manage people, cars and things intelligently. One of the most important core technologies in the intelligent visual Internet of things is visual tagging technology. It can identify, understand and classify the content of video or image, and "label" it, and display the content of label information corresponding to the identified object. According to the needs of the project, this paper designs and implements a set of visual label system based on human, car and object. The system mainly includes character recognition module, vehicle recognition module and object recognition module. In this system, a picture can be selected according to the needs of the user, and the system automatically recognizes the contents of the picture and displays other pictures and its information labels. In the character recognition module, based on face recognition technology, this paper uses principal component analysis (Principal Component Analysis,PCA) algorithm and support vector machine (Support Vector Machine,SVM) algorithm to carry out face recognition. Firstly, PCA algorithm is used for feature extraction and dimension reduction, and then SVM algorithm is used for classification and recognition. In the vehicle recognition module, this paper uses the color-based license plate recognition algorithm to identify the license plate number of the vehicle in the image obtained from the intelligent visual Internet of things, such as license plate location, license plate correction, character segmentation, character recognition and so on. In the object recognition module, the object recognition method based on convolution neural network is used to complete the recognition of the same kind of object (taking the water cup as an example). Finally, this paper integrates three modules into one system, and develops a set of intelligent recognition system of human, car and thing with visual label function. The experimental results show that the system has good performance and can meet the basic needs of users.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.4;TN929.5
[Abstract]:Intelligent visual Internet of things (IVIOT),) is the Internet of things with visual perception function. It usually consists of four parts: visual sensor, visual information transmission, visual information processing and Internet of things application. Intelligent vision Internet of things is an upgrade of the Internet of things. It uses image processing technology or computer vision technology to intelligently identify, locate and track the image from the image sensor, which is convenient for us to manage people, cars and things intelligently. One of the most important core technologies in the intelligent visual Internet of things is visual tagging technology. It can identify, understand and classify the content of video or image, and "label" it, and display the content of label information corresponding to the identified object. According to the needs of the project, this paper designs and implements a set of visual label system based on human, car and object. The system mainly includes character recognition module, vehicle recognition module and object recognition module. In this system, a picture can be selected according to the needs of the user, and the system automatically recognizes the contents of the picture and displays other pictures and its information labels. In the character recognition module, based on face recognition technology, this paper uses principal component analysis (Principal Component Analysis,PCA) algorithm and support vector machine (Support Vector Machine,SVM) algorithm to carry out face recognition. Firstly, PCA algorithm is used for feature extraction and dimension reduction, and then SVM algorithm is used for classification and recognition. In the vehicle recognition module, this paper uses the color-based license plate recognition algorithm to identify the license plate number of the vehicle in the image obtained from the intelligent visual Internet of things, such as license plate location, license plate correction, character segmentation, character recognition and so on. In the object recognition module, the object recognition method based on convolution neural network is used to complete the recognition of the same kind of object (taking the water cup as an example). Finally, this paper integrates three modules into one system, and develops a set of intelligent recognition system of human, car and thing with visual label function. The experimental results show that the system has good performance and can meet the basic needs of users.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.4;TN929.5
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 吳雪霽;;把握“物聯(lián)網(wǎng)”時(shí)代的三個(gè)關(guān)鍵點(diǎn)[J];通信世界;2009年33期
2 秦茜;;物聯(lián)網(wǎng)驟成產(chǎn)業(yè)巨浪 各方大肆追捧恐為時(shí)尚早[J];IT時(shí)代周刊;2009年Z2期
3 石菲;;物聯(lián)網(wǎng)還有多遠(yuǎn)[J];中國(guó)計(jì)算機(jī)用戶;2009年Z2期
4 馬繼華;韓文哲;;物聯(lián)網(wǎng)的未來會(huì)變成“空中樓閣”嗎?[J];信息網(wǎng)絡(luò);2009年10期
5 ;物聯(lián)網(wǎng)系列報(bào)道之一 理性物聯(lián)網(wǎng)[J];通信世界;2009年40期
6 李鵬;;物聯(lián)網(wǎng)發(fā)展 標(biāo)準(zhǔn)與應(yīng)用先行[J];通信世界;2009年40期
7 李鵬;趙經(jīng)緯;;北郵謝東亮 物聯(lián)網(wǎng)需兩顆紅心一種準(zhǔn)備[J];通信世界;2009年40期
8 周雙陽;;尋找物聯(lián)網(wǎng)的制高點(diǎn)[J];通信世界;2009年41期
9 張鵬;;物聯(lián)網(wǎng),十年涅i,
本文編號(hào):2503721
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2503721.html
最近更新
教材專著