機坪地面空調(diào)機組運行狀態(tài)監(jiān)測的關(guān)鍵技術(shù)研究
[Abstract]:Aiming at the problems of low efficiency and delayed maintenance caused by intermittent fault of apron ground air conditioning, in recent years, real-time monitoring of the running state of the equipment has been carried out through prediction, so as to achieve the advance maintenance of the equipment. This paper deals with the improvement of the associated Apriori algorithm in data mining algorithm and the intermittent fault prediction method based on the combination of the improved algorithm and the clustering k-means algorithm. Based on this, the delayed maintenance prediction is realized. Firstly, the associated Apriori algorithm is improved. In order to solve the problem that the associated Apriori algorithm scans transaction database frequently, the efficiency is improved by constructing the intermittent fault array in real-time and adding the corresponding terms to it. Simulation results show that the efficiency of the improved algorithm is obviously due to the original algorithm. Then the improved AS-Apriori algorithm is used to carry out the quadratic correlation, and then combined with the clustering k-means algorithm, the intermittent fault prediction is carried out. And while the initial conditions are stricter and the data set is 10 times larger, for the different data types and variables, two combined fault prediction methods (the second is the first improved method) are obtained. And the simulation results show that the second combination method is more suitable for the operation of mass fault data on the ground air conditioning system. Finally, the critical area of permanent fault is estimated by using the prediction of delay maintenance to arrange reasonable maintenance. The critical region of permanent fault is predicted by normal distribution model for the accumulation of maintenance delay of intermittent fault. Simulation results show that the predicted probability of maintenance and delay accumulation is linearly distributed, that is to say, intermittent faults with high predictability are easier to maintain and manage in advance and reduce the formation of permanent faults.
【學(xué)位授予單位】:中國民航大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:V351.3;TP311.13
【參考文獻】
相關(guān)期刊論文 前10條
1 陳維興;曲睿;孫毅剛;;基于改進Apriori算法的地面空調(diào)間歇故障預(yù)測[J];計算機應(yīng)用;2016年12期
2 徐加民;王沖;張磊;孫東華;;航空安全系統(tǒng)維護與故障維修技術(shù)分析[J];數(shù)字技術(shù)與應(yīng)用;2016年11期
3 楊洪富;賈曉亮;任壽偉;;基于數(shù)據(jù)驅(qū)動的航空發(fā)動機故障診斷與預(yù)測方法綜述[J];航空精密制造技術(shù);2016年05期
4 安正;;煤礦機電設(shè)備故障診斷及維修技術(shù)探析[J];機械管理開發(fā);2016年10期
5 陳亮;;電力系統(tǒng)維修技術(shù)的故障排除方法[J];電子技術(shù)與軟件工程;2016年18期
6 牛猛;;Apriori算法的研究與實現(xiàn)[J];赤峰學(xué)院學(xué)報(自然科學(xué)版);2016年08期
7 李向新;;淺談航空裝備的綠色維修[J];科技視界;2016年09期
8 楊若庸;;民用航空器維修故障原因及質(zhì)量改進措施[J];企業(yè)技術(shù)開發(fā);2016年08期
9 孫毅剛;曲睿;陳維興;王慧敏;;面向數(shù)據(jù)挖掘的靜態(tài)電源綜合故障診斷研究[J];計算機測量與控制;2015年10期
10 張海峰;胡明華;;航空公司短期航班計劃編排模型及算法[J];南京航空航天大學(xué)學(xué)報;2015年04期
相關(guān)博士學(xué)位論文 前3條
1 朱霄s,
本文編號:2430840
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2430840.html