天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 信息類碩士論文 >

抗CFP攻擊的社交網(wǎng)絡(luò)隱私保護(hù)算法研究

發(fā)布時(shí)間:2018-10-20 17:05
【摘要】:隨著互聯(lián)網(wǎng)和大數(shù)據(jù)時(shí)代的到來(lái),互聯(lián)網(wǎng)給人們帶來(lái)了巨大生活便利,但也使得人們的隱私保護(hù)受到很大程度上的威脅。因?yàn)橄鄬?duì)于數(shù)據(jù)信息傳播速度不那么發(fā)達(dá)的時(shí)期,在現(xiàn)有網(wǎng)絡(luò)環(huán)境下收集、整合、分析和傳播用戶信息要容易的多,所以會(huì)導(dǎo)致用戶信息更易于泄露。因此在互聯(lián)網(wǎng)上如何保護(hù)個(gè)人隱私成為研究的熱點(diǎn)問(wèn)題。目前,已有很多關(guān)于社交網(wǎng)絡(luò)隱私保護(hù)的方法和模型,其中最經(jīng)典的是k-匿名社交網(wǎng)絡(luò)隱私保護(hù)算法。它要求在k-匿名數(shù)據(jù)集里,每條具有標(biāo)識(shí)的記錄至少有k-1個(gè)記錄與之相同。因此,k-匿名社交網(wǎng)絡(luò)隱私保護(hù)算法在一定程度上保護(hù)了個(gè)人隱私。但是,現(xiàn)有的k-匿名技術(shù)在進(jìn)行隱私保護(hù)時(shí),將社交網(wǎng)絡(luò)中的節(jié)點(diǎn)全部設(shè)為私有,忽略了實(shí)際網(wǎng)絡(luò)中存在大量公有節(jié)點(diǎn)。這些公有節(jié)點(diǎn)身份是公開(kāi)的,攻擊者可以利用它們與私有節(jié)點(diǎn)之間的連接作為背景知識(shí)對(duì)私有節(jié)點(diǎn)進(jìn)行再識(shí)別攻擊,即Connection Fingerprint(CFP)攻擊。原有的抗CFP抗擊隱私保護(hù)算法很好地保護(hù)了公有節(jié)點(diǎn)的中心性,但是仍有不足之處,沒(méi)有盡可能多地考慮社交網(wǎng)絡(luò)圖性質(zhì)。本文在此基礎(chǔ)上提出了一種改進(jìn)的抗CFP社交網(wǎng)絡(luò)隱私保護(hù)算法。主要工作有:第一,分析原有的抗CFP攻擊的社交網(wǎng)絡(luò)隱私保護(hù)算法。針對(duì)CFP攻擊,現(xiàn)有的社交網(wǎng)絡(luò)隱私保護(hù)算法在實(shí)施邊替換時(shí)隨機(jī)選取等價(jià)組中的私有節(jié)點(diǎn),忽略了網(wǎng)絡(luò)圖中各私有節(jié)點(diǎn)的中心性等。第二,針對(duì)原有的抗CFP攻擊隱私保護(hù)算法,即K-anony算法考慮圖性質(zhì)的不足,提出一種改進(jìn)的抗CFP攻擊隱私保護(hù)算法——N-hop-K-anony算法。其思想是:在n跳范圍內(nèi),對(duì)任意私有節(jié)點(diǎn)v都至少有其余k-1個(gè)節(jié)點(diǎn)與其所連接的公共節(jié)點(diǎn)相同。N-hop-K-anony在進(jìn)行節(jié)點(diǎn)邊替換時(shí),從社交網(wǎng)絡(luò)圖性質(zhì)的幾個(gè)評(píng)價(jià)標(biāo)準(zhǔn)出發(fā),最終選取網(wǎng)絡(luò)聚集系數(shù)作為其理論依據(jù),對(duì)原有算法進(jìn)行改進(jìn)。改進(jìn)后的算法在邊替換上做出處理,并編碼實(shí)現(xiàn)改進(jìn)前后的算法。第三,在email-Eu-core、College Msg、Facebook和ca-Gr Qc四個(gè)真實(shí)有效的數(shù)據(jù)集上進(jìn)行改進(jìn)前后算法的對(duì)比實(shí)驗(yàn)。通過(guò)對(duì)比實(shí)驗(yàn)可以發(fā)現(xiàn):在時(shí)間性能基本一致的情況下,算法改進(jìn)后在一定程度上比改進(jìn)前更能夠保護(hù)節(jié)點(diǎn)中心性,尤其是緊密中心性和介數(shù)中心性;在網(wǎng)絡(luò)聚集系數(shù)上,算法改進(jìn)后也比改進(jìn)前具有較好的實(shí)驗(yàn)效果。
[Abstract]:With the advent of the Internet and big data era, the Internet has brought great convenience to people, but also make people's privacy protection is threatened to a great extent. It is much easier to collect, integrate, analyze and disseminate user information in the existing network environment than in the period when the speed of data dissemination is not so developed. Therefore, how to protect personal privacy on the Internet has become a hot issue. At present, there are many methods and models of social network privacy protection, among which the most classical is the k-anonymous social network privacy protection algorithm. It requires at least K-1 records to be identical to each identified record in a k- anonymous dataset. Therefore, k-anonymous social network privacy protection algorithm to a certain extent to protect personal privacy. However, the existing k- anonymity technology in privacy protection, all the nodes in the social network are set private, ignoring the existence of a large number of public nodes in the actual network. The identity of these public nodes is public and the attacker can use the connection between them and the private node as the background knowledge to re-identify the private node attack, that is, the Connection Fingerprint (CFP) attack. The original anti-CFP privacy protection algorithm protects the centrality of public nodes well, but there are still some shortcomings, and the nature of social network graph is not considered as much as possible. In this paper, an improved privacy protection algorithm against CFP social networks is proposed. The main work is as follows: first, the original privacy protection algorithm against CFP attack is analyzed. For CFP attacks, the existing privacy protection algorithms of social networks randomly select the private nodes in the equivalent group when implementing edge substitution, ignoring the centrality of each private node in the network diagram. Secondly, an improved privacy protection algorithm (N-hop-K-anony) against CFP attacks is proposed, which is an improved privacy protection algorithm against CFP attacks, that is, K-anony algorithm takes into account the shortcomings of graph properties. The idea is: in the n-hop range, at least the remaining k-1 nodes for any private node v are the same as the public nodes connected there.When N-hop-K-anony performs node side substitution, it starts from several evaluation criteria of the nature of social network graph. Finally, the network aggregation coefficient is selected as the theoretical basis to improve the original algorithm. The improved algorithm deals with edge substitution and encodes the improved algorithm. Thirdly, the contrast experiment of the improved algorithm is carried out on the four real and effective data sets of email-Eu-core,College Msg,Facebook and ca-Gr Qc. Through comparison experiments, we can find that the improved algorithm can protect node centrality to some extent, especially tight centrality and medium centrality, in the case of basically consistent time performance, and in the network aggregation coefficient, the improved algorithm can protect node centrality to a certain extent, especially the close-centrality and intermediate-centrality. The improved algorithm also has better experimental results than before.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP309

【參考文獻(xiàn)】

相關(guān)期刊論文 前7條

1 劉向宇;李佳佳;安云哲;周大海;夏秀峰;;一種保持結(jié)點(diǎn)可達(dá)性的高效社會(huì)網(wǎng)絡(luò)圖匿名算法[J];軟件學(xué)報(bào);2016年08期

2 仝偉;毛云龍;陳慶軍;王彬入;張保佳;仲盛;;抗大數(shù)據(jù)分析的隱私保護(hù):研究現(xiàn)狀與進(jìn)展[J];網(wǎng)絡(luò)與信息安全學(xué)報(bào);2016年04期

3 姚瑞欣;李暉;曹進(jìn);;社交網(wǎng)絡(luò)中的隱私保護(hù)研究綜述[J];網(wǎng)絡(luò)與信息安全學(xué)報(bào);2016年04期

4 王姣;范科峰;王勇;;面向數(shù)據(jù)發(fā)布和挖掘的隱私保護(hù)研究進(jìn)展[J];網(wǎng)絡(luò)與信息安全學(xué)報(bào);2016年01期

5 劉君;喬建忠;;復(fù)雜網(wǎng)絡(luò)中k-核與網(wǎng)絡(luò)聚集系數(shù)的關(guān)聯(lián)性研究[J];通信學(xué)報(bào);2015年01期

6 劉向宇;王斌;楊曉春;;社會(huì)網(wǎng)絡(luò)數(shù)據(jù)發(fā)布隱私保護(hù)技術(shù)綜述[J];軟件學(xué)報(bào);2014年03期

7 任靜涵;張保穩(wěn);陳曉樺;;隱私保護(hù)數(shù)據(jù)挖掘研究進(jìn)展[J];信息安全與通信保密;2008年05期



本文編號(hào):2283812

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2283812.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶db8fb***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com