高校圖書推薦系統(tǒng)算法與模型的研究
[Abstract]:Since the 21st century, the level of science and technology all over the world has been improved, and the information has been increasing explosively. People have changed from the mode of searching for information to the mode of seeking useful information. There are many ways to find useful information from mass information, and recommendation system is one of the most important and widely used methods. By using the recommendation system, all the network merchants have achieved good results, which provides the possibility for the application of the recommendation system in the field of book recommendation in colleges and universities. There are many algorithms in recommendation system, among which the most classical one is collaborative filtering algorithm. In this paper, the collaborative filtering algorithm based on user and item is studied in depth. Aiming at the particularity of book recommendation in colleges and universities, such as borrowing data and not using it directly, the similarity matrix is too sparse to produce recommendation and so on. These two algorithms are improved. However, these two algorithms have their own advantages and disadvantages in the field of book recommendation in colleges and universities. Through the combination of the two algorithms, a hybrid recommendation system model is proposed. Finally, the evaluation indexes of mixed recommendation algorithm and single recommendation algorithm are compared through experiments, which provides theoretical support for the application of book recommendation in colleges and universities. The main work of this study is as follows: in the first part, the principle of recommendation system and some classical recommendation algorithms are studied in depth, and the feasibility of applying recommendation algorithm in the field of book recommendation in colleges and universities is analyzed. Then a collaborative filtering algorithm model based on reader (RCF) and book (BCF) is constructed. The second part, because the university book recommendation is different from the movie recommendation or the commodity recommendation, it does not contain the user to the article score, in view of this characteristic, through the processing to the book loan record, proposed one kind of quantification score model. On the basis of quantifying readers' preference for books, a reader-book scoring matrix is constructed. In the third part, aiming at the characteristic that the reader-book scoring matrix is too sparse, this paper combines the Chinese book classification method with the book borrowing record, and constructs the reader-book classification scoring matrix. Then the collaborative filtering algorithm based on readers and books is improved. In the fourth part, through the combination of improved RCF and BCF, the (HCF) model of hybrid recommendation system is constructed, and then the experimental verification is carried out, and three kinds of algorithm models are evaluated. In the fifth part, according to the results of the model, the author puts forward some suggestions on the application of the book recommendation system in colleges and universities.
【學(xué)位授予單位】:內(nèi)蒙古大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.3
【參考文獻】
相關(guān)期刊論文 前10條
1 王成;朱志剛;張玉俠;蘇芳芳;;基于用戶的協(xié)同過濾算法的推薦效率和個性化改進[J];小型微型計算機系統(tǒng);2016年03期
2 王連喜;;一種面向高校圖書館的個性化圖書推薦系統(tǒng)[J];現(xiàn)代情報;2015年12期
3 江周峰;楊俊;鄂海紅;;結(jié)合社會化標(biāo)簽的基于內(nèi)容的推薦算法[J];軟件;2015年01期
4 張閃閃;黃鵬;;高校圖書館圖書推薦系統(tǒng)中的稀疏性問題實證探析[J];大學(xué)圖書館學(xué)報;2014年06期
5 宋曉丹;李雪垠;李晉瑞;;《中國圖書館分類法》(第5版)的特殊仿分及其分類方法研究[J];國家圖書館學(xué)刊;2014年04期
6 張雯;;關(guān)于數(shù)字圖書館的發(fā)展和思考[J];現(xiàn)代經(jīng)濟信息;2014年01期
7 馬仲兵;;基于關(guān)聯(lián)規(guī)則的高校圖書館個性化推薦模型[J];新世紀(jì)圖書館;2013年07期
8 劉書芬;;近十年高校圖書館圖書推薦研究綜述[J];韶關(guān)學(xué)院學(xué)報;2013年07期
9 王國霞;劉賀平;;個性化推薦系統(tǒng)綜述[J];計算機工程與應(yīng)用;2012年07期
10 董坤;;基于協(xié)同過濾算法的高校圖書館圖書推薦系統(tǒng)研究[J];現(xiàn)代圖書情報技術(shù);2011年11期
相關(guān)博士學(xué)位論文 前1條
1 劉青文;基于協(xié)同過濾的推薦算法研究[D];中國科學(xué)技術(shù)大學(xué);2013年
相關(guān)碩士學(xué)位論文 前5條
1 李容;協(xié)同過濾推薦系統(tǒng)中稀疏性數(shù)據(jù)的算法研究[D];電子科技大學(xué);2016年
2 黃傳飛;基于項目的協(xié)同過濾算法的改進[D];江西師范大學(xué);2015年
3 方洪鷹;數(shù)據(jù)挖掘中數(shù)據(jù)預(yù)處理的方法研究[D];西南大學(xué);2009年
4 張娜;電子商務(wù)環(huán)境下的個性化信息推薦服務(wù)及應(yīng)用研究[D];合肥工業(yè)大學(xué);2007年
5 楊瑞峰;WEB上基于文本挖掘的個性化檢索系統(tǒng)的設(shè)計與實現(xiàn)[D];電子科技大學(xué);2003年
,本文編號:2228855
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2228855.html