基于Gabor特征的銀行卡號識別算法研究
[Abstract]:With the gradual rise and rapid development of mobile payment, the number of APP providing mobile payment is increasing rapidly. These APP require the user to bind the bank card, and input the bank card number is an essential step. But the number of digits, it is difficult to remember all, manual input easy to input error, inefficient. The merchant hopes to use the camera of the mobile device to capture the image of the bank card and to recognize the card number according to the image of the bank card and directly input the card number into the mobile device. This method also brings convenience to the user. The color of the card is black, the background pattern has no effect on the card number area, and the human eye can recognize the card number by color difference. The card is a bank card with concave and convex characters, which is imprinted by machine. The eyes recognize the card numbers by depth and luminance information. The bank card with concave and convex characters has little difference between the color of the card number character and the background area, so the background pattern on the card surface is difficult to separate from the card number character, which will bring great difficulties to the segmentation and recognition of the card number. This paper presents a method of card number recognition for the card with concave and convex characters. The preprocessing of bump bank card image is to correct the bank card image firstly. According to the characteristics of bank card, this paper calculates the tilt angle of bank card image by Radon transform, and realizes the tilt correction of bank card image. Then according to the characteristics of the position of the bank card number, the corrected bank card image is extracted from the card number region, and most background areas which are not related to the card number on the bank card are removed, and the card number area is roughly segmented. Then the coarse extracted image is detected by Canny, and the edge image is projected and analyzed. According to the distribution rule of projection pixels, the card number region can be accurately segmented. Concave and convex characters are similar in color to the background and difficult to separate from the background. The existence of background pattern will also affect the segmentation of single card number characters, so this paper uses sliding recognition method to identify the card number. The edge of concave and convex character is different from the gray value of background area. Two-dimensional Gabor filter can extract character feature of certain width and texture feature of character from different angle. It has certain anti-interference ability to background pattern. In this paper, we use multi-angle Gabor filter to extract the texture feature of single character, and then get the character feature with better classification effect by PCA and LDA quadratic dimension reduction. The feature based template matching algorithm is used to identify the bank card number. Finally, the Luhn algorithm is used to verify the recognition result of the card number.
【學位授予單位】:大連海事大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關期刊論文 前10條
1 高聰;王福龍;;基于模板匹配和局部HOG特征的車牌識別算法[J];計算機系統(tǒng)應用;2017年01期
2 董虎勝;;主成分分析與線性判別分析兩種數(shù)據(jù)降維算法的對比研究[J];現(xiàn)代計算機(專業(yè)版);2016年29期
3 ;移動互聯(lián)識別新引擎 文通推出銀行卡識別SDK[J];電子技術與軟件工程;2015年02期
4 王凱;郝偉;;銀行卡號Luhn校驗算法的JS實現(xiàn)[J];信息技術與信息化;2014年07期
5 ;商務部發(fā)布《中國電子商務報告(2013)》[J];信息技術與信息化;2014年04期
6 吳成茂;郭銳;;三種典型模板匹配算法性能比較[J];西安郵電大學學報;2014年03期
7 許宏科;秦嚴嚴;陳會茹;;一種基于改進Canny的邊緣檢測算法[J];紅外技術;2014年03期
8 阮越;陳漢武;劉志昊;張俊;朱皖寧;;量子主成分分析算法[J];計算機學報;2014年03期
9 趙小明;孫曉璇;;基于Luhn算法的銀行卡號正確性驗證[J];電腦編程技巧與維護;2013年14期
10 鄒柏賢;張然;苗軍;;Prewitt圖像邊緣檢測方法的改進[J];微電子學與計算機;2013年05期
相關博士學位論文 前7條
1 何長濤;多模醫(yī)學圖像預處理和融合方法研究[D];電子科技大學;2013年
2 縱凱;我國銀行卡市場的定價策略與福利分析[D];東北財經(jīng)大學;2012年
3 曾俊;圖像邊緣檢測技術及其應用研究[D];華中科技大學;2011年
4 李建美;標牌壓印字符圖像獲取與處理中的關鍵技術研究[D];山東大學;2008年
5 李學勇;金屬標牌壓印凹凸字符的特征提取和識別方法研究[D];山東大學;2008年
6 李國平;基于莫爾技術的標牌凹凸字符圖像獲取與識別研究[D];山東大學;2007年
7 靳明;基于Gabor濾波器的軍用目標識別及跟蹤方法的研究[D];中國科學院研究生院(長春光學精密機械與物理研究所);2005年
相關碩士學位論文 前10條
1 張雪楠;基于PCA降維的快速人臉檢測算法研究[D];燕山大學;2016年
2 陳玉玲;基于Gabor和ILDA的人耳識別研究[D];江西理工大學;2015年
3 湯鵬;基于LDA的特征提取及其在人臉識別中的應用[D];河北大學;2015年
4 王瓊;低質(zhì)量壓印字符的分割與識別技術研究[D];山東大學;2015年
5 吳飛飛;文本圖像傾斜校正算法的研究與應用[D];北方工業(yè)大學;2014年
6 舒志國;基于DSP的車牌圖像傾斜校正算法研究[D];安徽理工大學;2014年
7 馮君玲;車牌識別系統(tǒng)中車牌定位與傾斜校正的研究與實現(xiàn)[D];廣西師范大學;2013年
8 水天一;基于移動電話的信用卡卡號識別研究[D];復旦大學;2012年
9 唐春益;AdaBoost算法及其在目標識別中的應用研究[D];南昌航空大學;2012年
10 賀曉佳;灰度圖像快速匹配算法研究[D];合肥工業(yè)大學;2012年
,本文編號:2172882
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2172882.html