天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

基于BP神經(jīng)網(wǎng)絡(luò)的大學生科研能力評價

發(fā)布時間:2018-07-13 16:34
【摘要】:在創(chuàng)新型國家建設(shè)和國家科技體制改革的背景下,為了適應(yīng)國家科技發(fā)展趨勢,高校對學生進行科研能力培養(yǎng)與評價是十分必要的。傳統(tǒng)能力評價缺乏對評價指標的重要度判斷,重要度判斷過程具有隨意性和主觀性,針對以上問題,本文使用BP神經(jīng)網(wǎng)絡(luò)對大學生科研能力進行評價,旨在提高評價過程的科學性和精確性,完善大學生培養(yǎng)過程,為高校了解學生科研能力提供較為科學的依據(jù)。本文首先基于大學生科研能力培養(yǎng)的過程、論文寫作流程,分析每個過程中涉及到的能力,構(gòu)建了大學生科研能力評價指標體系;綜合利用形成性評價和終結(jié)性評價的方式,設(shè)計了大學生科研能力指標評分細則;根據(jù)評分細則表設(shè)計了網(wǎng)絡(luò)調(diào)查問卷,根據(jù)收集的問卷數(shù)據(jù)基于組合賦權(quán)法對指標賦權(quán)。然后針對評價指標的非線性特征,達到弱化傳統(tǒng)評價方法存在的隨機性和主觀性的效果,實現(xiàn)能力評價的科學性和實用性,構(gòu)建了基于BP神經(jīng)網(wǎng)絡(luò)的評價模型;為了加強訓練樣本的可比性,利用min-max方法對樣本內(nèi)容進行標準化處理;根據(jù)樣本的選擇規(guī)則,從問卷數(shù)據(jù)中選取了等量的樣本用來訓練和測試;利用試湊法確定了隱層神經(jīng)元的數(shù)量;應(yīng)用選取的樣本對基于梯度下降法、擬牛頓法、列文伯格法(Levenberg-Marquardt,LM)的BP神經(jīng)網(wǎng)絡(luò)在matlab軟件中進行實驗,從網(wǎng)絡(luò)均方誤差、迭代次數(shù)、泛化能力、預測準確率等四個評價指標對3種BP神經(jīng)網(wǎng)絡(luò)模型針對本問題進行了可行性驗證,實驗結(jié)果表明基于LM算法的8-12-1的單隱層BP神經(jīng)網(wǎng)絡(luò)評價模型應(yīng)用于大學生科研能力評價是可行的。最后對原型系統(tǒng)進行設(shè)計與實現(xiàn),從需求分析、數(shù)據(jù)庫設(shè)計、核心模塊三個方面進行了闡述,設(shè)計并實現(xiàn)了 BP神經(jīng)網(wǎng)絡(luò)模型管理模塊和能力評價模塊,初步實現(xiàn)了評價大學生科研能力的原型系統(tǒng),為大學生科研管理提供了實用的工具。
[Abstract]:Under the background of the construction of innovative country and the reform of national science and technology system, it is very necessary for colleges and universities to cultivate and evaluate students' scientific research ability in order to adapt to the development trend of national science and technology. The traditional ability evaluation lacks the importance judgment to the evaluation index, the important degree judgment process has the arbitrariness and the subjectivity, in view of the above question, this article uses the BP neural network to carry on the appraisal to the university student scientific research ability. The purpose of this paper is to improve the scientificity and accuracy of the evaluation process, to perfect the cultivation process of college students, and to provide a scientific basis for the understanding of students' scientific research ability in colleges and universities. Firstly, based on the process of cultivating college students' scientific research ability, the thesis writing process, analyzing the ability involved in each process, constructing the evaluation index system of university students' scientific research ability, synthetically utilizing the formative evaluation and summative evaluation methods. The evaluation rules of scientific research ability index of college students are designed, and the network questionnaire is designed according to the scoring rules table, and the index is weighted according to the collected questionnaire data based on the combination weight method. Then aiming at the nonlinear characteristics of the evaluation index, the evaluation model based on BP neural network is constructed by weakening the randomness and subjectivity of the traditional evaluation method and realizing the scientificity and practicability of the ability evaluation. In order to enhance the comparability of training samples, the min-max method is used to standardize the contents of the samples, and according to the selection rules of the samples, the same number of samples are selected from the questionnaire data for training and testing. The number of hidden layer neurons is determined by trial and error method, and the BP neural network based on gradient descent method, quasi-Newton method and Levenberg-Marquardt LM method is used to test the BP neural network in matlab software. Four evaluation indexes, such as generalization ability and prediction accuracy, are used to verify the feasibility of three BP neural network models. The experimental results show that the application of 8-12-1 single hidden layer BP neural network evaluation model based on LM algorithm to the evaluation of university students' scientific research ability is feasible. Finally, the prototype system is designed and implemented, including requirement analysis, database design and core module. The model management module and capability evaluation module of BP neural network are designed and implemented. The prototype system for evaluating the scientific research ability of college students is implemented preliminarily, which provides a practical tool for the management of university students' scientific research.
【學位授予單位】:大連海事大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:G642;TP183

【參考文獻】

相關(guān)期刊論文 前10條

1 劉春霞;田蕓;;高?蒲心芰Φ膮f(xié)同IWD粗糙集-塊神經(jīng)網(wǎng)絡(luò)評估模型[J];計算機工程與科學;2016年03期

2 鄭金山;郎奠波;;高校教師科研能力評估模型研究[J];哈爾濱師范大學自然科學學報;2016年02期

3 王亮軍;李國寧;劉雨佳;;基于粒子群聚類算法的模糊神經(jīng)網(wǎng)絡(luò)建模方法研究[J];微電子學與計算機;2016年02期

4 宋曉勇;陳年生;;遺傳算法和神經(jīng)網(wǎng)絡(luò)耦合的金融預測系統(tǒng)[J];上海交通大學學報;2016年02期

5 王林;彭璐;夏德;曾奕;;自適應(yīng)差分進化算法優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的時間序列預測[J];計算機工程與科學;2015年12期

6 于勁松;沈琳;唐荻音;劉浩;;基于貝葉斯網(wǎng)絡(luò)的故障診斷系統(tǒng)性能評價[J];北京航空航天大學學報;2016年01期

7 冷昕;張樹群;雷兆宜;;改進的人工蜂群算法在神經(jīng)網(wǎng)絡(luò)中的應(yīng)用[J];計算機工程與應(yīng)用;2016年11期

8 朱劍;;科研體制與學術(shù)評價之關(guān)系——從“學術(shù)亂象”根源問題說起[J];清華大學學報(哲學社會科學版);2015年01期

9 黃宇;李戰(zhàn)國;馮愛明;;高?蒲袆(chuàng)新團隊建設(shè):困境與突圍[J];高等工程教育研究;2013年02期

10 徐恪;朱敏;林闖;;互聯(lián)網(wǎng)體系結(jié)構(gòu)評估模型、機制及方法研究綜述[J];計算機學報;2012年10期

相關(guān)博士學位論文 前1條

1 鞠儒生;基于數(shù)據(jù)耕種與數(shù)據(jù)挖掘的系統(tǒng)效能評估方法研究[D];國防科學技術(shù)大學;2006年

,

本文編號:2120055

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2120055.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶7c576***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com