基于多源時(shí)空數(shù)據(jù)的城市社區(qū)宜居性動(dòng)態(tài)評(píng)價(jià)方法研究
本文選題:社區(qū)宜居性 + 多源數(shù)據(jù) ; 參考:《武漢大學(xué)》2017年碩士論文
【摘要】:隨著城市和經(jīng)濟(jì)的迅速發(fā)展,城市居民越來(lái)越關(guān)注自身所處的居住環(huán)境,"宜居"成為當(dāng)前時(shí)代的一個(gè)熱點(diǎn)。社區(qū)環(huán)境,是居民生存和發(fā)展的基礎(chǔ),其優(yōu)劣不僅關(guān)系著居民的身心健康,也能映射出城市經(jīng)濟(jì)發(fā)展和社區(qū)建設(shè)的水平。從社區(qū)的角度出發(fā),研究城市居民的居住適宜性,旨在科學(xué)地度量城市的宜居社區(qū)建設(shè)空間格局,為城市建設(shè)部門進(jìn)行宜居社區(qū)建設(shè)提供決策依據(jù),從而提高城市居民的生活質(zhì)量。同時(shí)也為居民的日常生活以及買房、租房等提供幫助。文章結(jié)合了出租車軌跡、在線地圖POI以及地理國(guó)情普查等多源數(shù)據(jù),基于分時(shí)段的社區(qū)交通熱點(diǎn)和社區(qū)活躍度構(gòu)建城市社區(qū)宜居性動(dòng)態(tài)評(píng)價(jià)方法,并對(duì)武漢市主城區(qū)的社區(qū)宜居性進(jìn)行分析與評(píng)價(jià),從時(shí)間和空間層面對(duì)其進(jìn)行剖析。本文的主要研究工作如下:(1)基于空間均值的社區(qū)基本公共服務(wù)設(shè)施均衡性評(píng)價(jià)。文章鑒于當(dāng)前基本公共服務(wù)設(shè)施指標(biāo)量化方法的不足,參考地理學(xué)中空間均值重力模型方法,對(duì)其進(jìn)行概念延伸,考慮從社區(qū)內(nèi)部基本公共服務(wù)設(shè)施分布的均衡性角度來(lái)對(duì)指標(biāo)進(jìn)行科學(xué)的評(píng)價(jià)。通過(guò)計(jì)算社區(qū)范圍內(nèi)指標(biāo)的空間均值,求得其與社區(qū)邊界幾何中心的偏離距離,然后除以POI點(diǎn)個(gè)數(shù)消除個(gè)數(shù)影響。通過(guò)探尋指標(biāo)在社區(qū)內(nèi)部的均衡性分布,從更科學(xué)的角度來(lái)量化指標(biāo)。(2)基于出租車數(shù)據(jù)的社區(qū)交通熱點(diǎn)提取。文章基于出租車軌跡數(shù)據(jù),根據(jù)其載客狀態(tài)、速度等屬性信息提取出租車載客點(diǎn)和擁堵特征點(diǎn),并利用基于時(shí)空聚類的ST-DBSCAN算法對(duì)提取的載客點(diǎn)和擁堵點(diǎn)進(jìn)行聚類分析,獲取各個(gè)時(shí)間段城市的交通熱點(diǎn)區(qū)域,然后通過(guò)緩沖區(qū)分析進(jìn)行指標(biāo)量化,獲取各時(shí)間段居民出行便捷度相關(guān)指標(biāo)數(shù)據(jù)。(3)基于土地利用混合度的社區(qū)活躍度分時(shí)段估計(jì)。文章考慮不同服務(wù)設(shè)施的活躍時(shí)間,利用學(xué)校、大型商場(chǎng)、農(nóng)貿(mào)市場(chǎng)等不同類型的POI數(shù)據(jù),根據(jù)他們的活躍時(shí)間基于土地利用混合度估計(jì)不同時(shí)段社區(qū)的活躍程度,具體土地利用混合度采用Hill Numbers的計(jì)算公式。通過(guò)對(duì)各時(shí)段社區(qū)活躍度的估計(jì),獲取各個(gè)時(shí)間段居民生活舒適性相關(guān)指標(biāo)數(shù)據(jù)。(4)城市社區(qū)宜居性動(dòng)態(tài)評(píng)價(jià)方法構(gòu)建及實(shí)現(xiàn)。文章考慮生活便利性、出行便捷度、居住安全性、環(huán)境舒適性四個(gè)方面,結(jié)合出租車軌跡、在線地圖POI、地理國(guó)情普查等多源數(shù)據(jù),基于分時(shí)段的社區(qū)交通熱點(diǎn)和活躍程度構(gòu)建城市社區(qū)宜居性動(dòng)態(tài)評(píng)價(jià)方法。首先確定了武漢市社區(qū)宜居性評(píng)價(jià)指標(biāo)體系,基于熵權(quán)法確定各級(jí)指標(biāo)的權(quán)重,然后計(jì)算各時(shí)段武漢市主城區(qū)各社區(qū)的宜居指數(shù),并進(jìn)行時(shí)空分析。在此基礎(chǔ)上,通過(guò)熵權(quán)法確定各時(shí)段宜居指數(shù)的權(quán)重,計(jì)算各社區(qū)的宜居綜合指數(shù),并進(jìn)行綜合評(píng)價(jià)與分析。
[Abstract]:With the rapid development of city and economy, urban residents pay more and more attention to their living environment. Community environment is the basis of residents' survival and development. Its merits and demerits are not only related to the physical and mental health of residents, but also reflect the level of urban economic development and community construction. In order to scientifically measure the spatial pattern of urban livable community construction and provide the decision basis for the urban construction department to carry out livable community construction, this paper studies the habitability of urban residents from the perspective of community, and studies the habitability of urban residents in order to measure the spatial pattern of livable community construction scientifically. So as to improve the quality of life of urban residents. At the same time also for the daily life of residents and buy a house, rental and so on to provide assistance. Based on the multi-source data, such as taxi track, online map POI and geographical situation survey, this paper constructs a dynamic evaluation method for liveability of urban communities based on the community traffic hot spots and community activity. The community livability of Wuhan city is analyzed and evaluated, and analyzed from time and space. The main work of this paper is as follows: (1) the equilibrium evaluation of community basic public service facilities based on spatial mean. In view of the deficiency of the current quantification method of basic public service facilities, this paper extends the concept of spatial mean gravity model with reference to the method of geography. To evaluate the indicators scientifically from the perspective of equilibrium of distribution of basic public service facilities in the community. By calculating the spatial mean value of the index in the community, the deviation distance between the index and the geometric center of the community boundary is obtained, and then the number of POI points is divided to eliminate the influence of the number of points. By exploring the equilibrium distribution of indicators within the community, the paper quantifies the indicators from a more scientific point of view. (2) Community traffic hot spot extraction based on taxi data. Based on the taxi track data, the paper extracts the taxi passenger point and congestion feature point according to the attribute information such as the state and speed of the taxi, and uses ST-DBSCAN algorithm based on temporal and spatial clustering to cluster the extracted passenger and congestion points. The traffic hot spots of cities in each time period are obtained, and then the index is quantified by buffer analysis. (3) based on the mixed degree of land use, community activity is estimated by time division. The article takes into account the active time of different service facilities, using different types of POI data, such as schools, shopping malls, farmers' markets, and estimating the activity of communities at different periods of time based on their active time. The mixing degree of land use is calculated by Hill numbers. Based on the estimation of community activity in different periods, the relevant index data of residents' comfort in different periods are obtained. (4) the dynamic evaluation method of livability of urban communities is constructed and realized. The article considers the convenience of life, the degree of travel convenience, the safety of living, the comfort of the environment, and the multi-source data, such as taxi track, online map POI, geographical situation survey, etc. Based on the community traffic hot spot and active degree, the dynamic evaluation method of livability of urban community is constructed. Firstly, the evaluation index system of community livability in Wuhan is determined, and the weight of indexes at all levels is determined based on entropy weight method, then the livable index of communities in main urban area of Wuhan is calculated in each time period, and the space-time analysis is carried out. On this basis, the weight of livable index in each time period is determined by entropy weight method, and the comprehensive index of livable life in each community is calculated, and the comprehensive evaluation and analysis are carried out.
【學(xué)位授予單位】:武漢大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:D669.3;P208
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李海林;萬(wàn);;;基于簇中心群的時(shí)間序列數(shù)據(jù)分類方法[J];電子科技大學(xué)學(xué)報(bào);2017年03期
2 呂紅偉;王士同;;預(yù)測(cè)子空間聚類的聚類集成算法[J];小型微型計(jì)算機(jī)系統(tǒng);2017年04期
3 張建輝;王會(huì)青;孫宏偉;郭芷榕;白瑩瑩;;基于二分迭代SAX的時(shí)序相似性度量算法[J];計(jì)算機(jī)科學(xué);2017年01期
4 白勇;孫曉雯;秦f ;孫子文;;基于SVD特征降維和支持向量機(jī)的跌倒檢測(cè)算法[J];計(jì)算機(jī)應(yīng)用與軟件;2017年01期
5 多超;;基于正交多項(xiàng)式回歸分析與ICA結(jié)合運(yùn)用的時(shí)序聚類[J];統(tǒng)計(jì)與管理;2016年12期
6 陳海燕;劉晨暉;孫博;;時(shí)間序列數(shù)據(jù)挖掘的相似性度量綜述[J];控制與決策;2017年01期
7 韓國(guó)文;黃笑言;趙剛;;中美德國(guó)債收益率曲線的共同影響因素[J];金融論壇;2016年10期
8 安玲玲;于雷;;基于高斯混合模型的心音信號(hào)識(shí)別[J];吉林大學(xué)學(xué)報(bào)(理學(xué)版);2016年05期
9 李進(jìn)東;王韜;吳楊;雷東;;基于主成分分析和學(xué)習(xí)矢量量化的會(huì)話初始協(xié)議識(shí)別研究[J];計(jì)算機(jī)工程;2016年06期
10 李海林;梁葉;;分段聚合近似和數(shù)值導(dǎo)數(shù)的動(dòng)態(tài)時(shí)間彎曲方法[J];智能系統(tǒng)學(xué)報(bào);2016年02期
,本文編號(hào):2080885
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2080885.html