基于MEMS傳感器的物體運(yùn)動(dòng)參數(shù)解算誤差分析及傳感器適用性研究
本文選題:MEMS傳感器 + 誤差分析 ; 參考:《中北大學(xué)》2017年碩士論文
【摘要】:MEMS傳感器價(jià)格低廉、尺寸小、質(zhì)量輕,在電子消費(fèi)產(chǎn)品等領(lǐng)域應(yīng)用廣泛。但其缺點(diǎn)是精度低,穩(wěn)定性差,限制了其應(yīng)用范圍。傳感器本身制造工藝以及長(zhǎng)時(shí)間的積分累積誤差和陀螺漂移的存在等因素,使得MEMS傳感器在測(cè)量方法精度無(wú)法滿足要求。如何使用此類MEMS傳感器,如何提高傳感器精度及誤差分析補(bǔ)償是本文的主要研究目標(biāo)。實(shí)驗(yàn)中使用的MEMS傳感器是集三軸加速度計(jì)和三軸陀螺于一體、低成本和低精度的數(shù)字傳感器。為初步探究傳感器性能,提高傳感器測(cè)量精度,運(yùn)用實(shí)驗(yàn)加仿真的方式對(duì)比分析該問(wèn)題。在完備的數(shù)字采集系統(tǒng)和成熟的軌跡解算方法的前提下,本文首先進(jìn)行了轉(zhuǎn)臺(tái)畫圓實(shí)驗(yàn),通過(guò)描繪運(yùn)動(dòng)軌跡,與已知圓軌跡對(duì)比分析,初步了解該傳感器的性能。用MATLAB仿真還原轉(zhuǎn)臺(tái)實(shí)驗(yàn)過(guò)程,用同樣的解算方法得到了圓的軌跡。仿真結(jié)果表明了該算法是正確的;同時(shí)對(duì)比實(shí)驗(yàn)結(jié)果,發(fā)現(xiàn)該傳感器無(wú)法在長(zhǎng)時(shí)間內(nèi)準(zhǔn)確測(cè)量運(yùn)動(dòng)體的位置信息。在算法正確的前提下,提高傳感器測(cè)量數(shù)據(jù)的準(zhǔn)確性。對(duì)于傳感器本身,由于批量化生產(chǎn),廠家給出統(tǒng)一的技術(shù)指標(biāo)。其次,論文提出對(duì)單片的加速度計(jì)的技術(shù)指標(biāo)參數(shù):零偏和標(biāo)度因子進(jìn)行校準(zhǔn)和補(bǔ)償,提出一種基于六姿態(tài)模型的加速度計(jì)校準(zhǔn)方法。由于靜止時(shí)重力加速度在三軸的分量即為加速度傳感器各軸輸出,據(jù)此原理建立誤差模型,利用算法對(duì)其零偏和標(biāo)度因子進(jìn)行校準(zhǔn)。經(jīng)實(shí)驗(yàn)驗(yàn)證:該校準(zhǔn)方法無(wú)需借助高精度轉(zhuǎn)臺(tái)等設(shè)備,就可實(shí)現(xiàn)加速度傳感器的快速校準(zhǔn)。相比廠家所給相關(guān)技術(shù)指標(biāo),其精度有所提高。最后,為進(jìn)一步研究傳感器使用時(shí)的約束條件,通過(guò)仿真的方式,從理論角度分別分析加速度計(jì)的零偏和靈敏度系數(shù)對(duì)測(cè)量結(jié)果的影響,并進(jìn)行誤差分析從而確定傳感器使用約束條件。
[Abstract]:MEMS sensors are widely used in electronic consumer products due to their low price, small size and light weight. However, its shortcomings are low precision and poor stability, which limits its application range. The fabrication process of the sensor itself, the accumulation error of integration for a long time and the existence of gyroscope drift make the precision of MEMS sensor unable to meet the requirements of the measurement method. How to use this kind of MEMS sensors, how to improve the accuracy of sensors and how to compensate for errors are the main research objectives of this paper. The MEMS sensor used in the experiment is a low cost and low precision digital sensor which integrates triaxial accelerometer and triaxial gyroscope. In order to explore the performance of the sensor and improve the precision of the sensor, the experiment and simulation are used to analyze the problem. On the premise of a complete digital acquisition system and a mature trajectory calculation method, this paper firstly carries out a circle drawing experiment on the turntable. By describing the motion trajectory and comparing it with the known circular trajectory, the performance of the sensor is preliminarily understood. The experiment process of restoring turntable is simulated by MATLAB, and the circular track is obtained by the same calculation method. The simulation results show that the algorithm is correct, and the experimental results show that the sensor can not accurately measure the position information of the moving body in a long time. On the premise of correct algorithm, the accuracy of sensor measurement data is improved. For the sensor itself, due to mass production, manufacturers give the unified technical indicators. Secondly, this paper presents the calibration and compensation of the technical parameters of monolithic accelerometers: zero-offset and scaling factors, and proposes a calibration method based on six-attitude model for accelerometers. Since the three-axis component of gravity acceleration at rest is the output of each axis of the acceleration sensor, the error model is established based on the principle, and its zero offset and scaling factor are calibrated by the algorithm. The experimental results show that this method can realize the rapid calibration of acceleration sensor without the help of high precision turntable and other equipment. Compared with the manufacturers to the relevant technical indicators, its accuracy has been improved. Finally, in order to further study the constraint conditions when the sensor is used, the effects of zero bias and sensitivity coefficient of accelerometer on the measurement results are analyzed theoretically by simulation. And error analysis is carried out to determine the use of the sensor constraints.
【學(xué)位授予單位】:中北大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP212
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 許鵬;陳琳;王娟;;MEMS加速度計(jì)的誤差補(bǔ)償方法[J];微納電子技術(shù);2016年07期
2 張文瑞;張丕狀;翟子雄;;一種基于六姿態(tài)模型的加速度計(jì)校準(zhǔn)方法研究[J];傳感器與微系統(tǒng);2016年03期
3 張海鷹;何波賢;鄭鐵山;吳一;;基于橢球擬合的三軸加速度計(jì)誤差補(bǔ)償方法[J];傳感器世界;2015年06期
4 尹杭;張偉;袁琳峰;;一種MEMS加速度計(jì)誤差分析與校準(zhǔn)方法[J];傳感技術(shù)學(xué)報(bào);2014年07期
5 龐鴻鋒;潘孟春;王偉;張琦;羅詩(shī)途;;基于高斯牛頓迭代算法的三軸磁強(qiáng)計(jì)校正[J];儀器儀表學(xué)報(bào);2013年07期
6 夏喜旺;杜涵;劉漢兵;;關(guān)于大角度范圍內(nèi)四元數(shù)與歐拉角轉(zhuǎn)換的思考[J];導(dǎo)彈與航天運(yùn)載技術(shù);2012年05期
7 陳旭光;楊平;陳意;;MEMS陀螺儀零位誤差分析與處理[J];傳感技術(shù)學(xué)報(bào);2012年05期
8 岳鳳英;李大威;李永紅;曹鳳才;;慣性航向姿態(tài)系統(tǒng)初始對(duì)準(zhǔn)仿真[J];火力與指揮控制;2009年12期
9 張榮輝;賈宏光;陳濤;張躍;;基于四元數(shù)法的捷聯(lián)式慣性導(dǎo)航系統(tǒng)的姿態(tài)解算[J];光學(xué)精密工程;2008年10期
10 趙耀霞;;慣性導(dǎo)航系統(tǒng)航向姿態(tài)計(jì)算算法研究[J];機(jī)械工程與自動(dòng)化;2006年03期
,本文編號(hào):2059900
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/2059900.html