基于時間上下文的移動應(yīng)用推薦系統(tǒng)研究與應(yīng)用
本文選題:推薦系統(tǒng) + 圖模型��; 參考:《山東農(nóng)業(yè)大學(xué)》2017年碩士論文
【摘要】:近年來,互聯(lián)網(wǎng)尤其是移動互聯(lián)網(wǎng)規(guī)模和技術(shù)發(fā)展迅猛,智能移動設(shè)備如智能手機(jī)、平板電腦等大量普及,智能手機(jī)用戶數(shù)量劇增。移動應(yīng)用作為智能手機(jī)的重要組成部分,改變了用戶的生活方式、工作方式、學(xué)習(xí)方式等,在系統(tǒng)設(shè)計與開發(fā)中占有重要地位。移動應(yīng)用市場如Google Play Store、Apple App Store等中的移動應(yīng)用數(shù)量達(dá)到了百萬級別,海量的移動應(yīng)用在給用戶提供便利、開發(fā)人員提供參考的同時,也帶來了新的挑戰(zhàn)。從用戶角度來看,在海量應(yīng)用中找到自己感興趣的應(yīng)用面臨巨大困難;從開發(fā)人員角度來看,在海量應(yīng)用中選取合適的應(yīng)用作為參考耗費大量精力。與此同時,智能手機(jī)用戶低齡化是一個不可忽視的趨勢,如何防止低齡用戶沉迷于智能手機(jī)是一個亟待解決的問題。本文對移動應(yīng)用個性化推薦進(jìn)行研究,首先對推薦算法進(jìn)行了改進(jìn),提出了一種基于用戶分裂的資源擴(kuò)散算法。在調(diào)研個性化推薦算法的過程中,發(fā)現(xiàn)用戶在時間維度上積累的興趣偏移對推薦算法的準(zhǔn)確率影響很大。在基于圖模型的資源擴(kuò)散算法的基礎(chǔ)上,將時間上下文信息融入算法中,提出了一種基于用戶分裂的資源擴(kuò)散算法,改進(jìn)了傳統(tǒng)的資源擴(kuò)散算法。改進(jìn)算法把興趣隨時間發(fā)生變化的用戶看作多個用戶,即采用用戶分裂思想引入時間上下文信息,更加充分的利用了數(shù)據(jù)信息,通過實驗對比發(fā)現(xiàn),和傳統(tǒng)的資源擴(kuò)散算法相比,改進(jìn)算法的準(zhǔn)確率明顯提高。然后將基于用戶分裂的資源擴(kuò)散算法應(yīng)用于移動應(yīng)用推薦領(lǐng)域,設(shè)計了一種面向智能手機(jī)用戶和開發(fā)人員的移動應(yīng)用推薦系統(tǒng)并實現(xiàn)了系統(tǒng)原型。對用戶進(jìn)行移動應(yīng)用的個性化推薦時,不僅使用個性化推薦算法迎合用戶的興趣偏好,而且根據(jù)用戶個人信息中的人口統(tǒng)計學(xué)特征,如年齡、性別等提供了不同的推薦策略;為方便開發(fā)人員在海量的移動應(yīng)用中尋找參考信息,系統(tǒng)為開發(fā)人員提供了應(yīng)用的用戶畫像、基于用戶特征的應(yīng)用查詢、移動應(yīng)用之間的關(guān)聯(lián)度等。最后從信息論的角度,看待移動應(yīng)用產(chǎn)生、生長、衰亡,進(jìn)行系統(tǒng)維護(hù)。
[Abstract]:In recent years, the scale and technology of the Internet, especially the mobile Internet, have developed rapidly. Smart mobile devices such as smartphones and tablets have been widely used, and the number of smartphone users has increased dramatically. As an important part of smart phone, mobile application has changed the user's life style, working style, learning style and so on, which plays an important role in the system design and development. The number of mobile applications in the mobile application market, such as Google Play Store App Store, has reached a million-level. The vast amount of mobile applications provide convenience to users and provide reference to developers, but also bring new challenges. From the user's point of view, it is difficult to find the application that is interested in the mass application; from the developer's point of view, it takes a lot of energy to select the appropriate application as the reference in the mass application. At the same time, the younger age of smartphone users is a trend that can not be ignored, and how to prevent young users from indulging in smartphones is an urgent problem to be solved. In this paper, personalized recommendation for mobile applications is studied. Firstly, the recommendation algorithm is improved, and a resource diffusion algorithm based on user splitting is proposed. In the process of investigating the personalized recommendation algorithm, it is found that the interest offset accumulated by the user in the time dimension has a great influence on the accuracy of the recommendation algorithm. On the basis of the resource diffusion algorithm based on graph model, the time context information is incorporated into the algorithm, and a resource diffusion algorithm based on user splitting is proposed, which improves the traditional resource diffusion algorithm. The improved algorithm regards users whose interests change with time as multiple users, that is, using the idea of user splitting to introduce time context information, which makes full use of the data information. Compared with the traditional resource diffusion algorithm, the accuracy of the improved algorithm is obviously improved. Then, the resource diffusion algorithm based on user splitting is applied to mobile application recommendation field, and a mobile application recommendation system for smart phone users and developers is designed and implemented. In the process of personalized recommendation for mobile applications, not only the personalized recommendation algorithm is used to cater to the interests and preferences of users, but also different recommendation strategies are provided according to the demographic characteristics of users' personal information, such as age, gender, etc. In order to facilitate developers to find reference information in a large number of mobile applications, the system provides developers with user portraits, application queries based on user characteristics, and the correlation between mobile applications, etc. Finally, from the point of view of information theory, the generation, growth, decline and system maintenance of mobile applications are discussed.
【學(xué)位授予單位】:山東農(nóng)業(yè)大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP391.3
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王媛媛;李翔;;基于人口統(tǒng)計學(xué)的改進(jìn)聚類模型協(xié)同過濾算法[J];計算機(jī)科學(xué);2017年03期
2 時念云;葛曉偉;馬力;;基于用戶人口統(tǒng)計特征與信任機(jī)制的協(xié)同推薦[J];計算機(jī)工程;2016年06期
3 周明建;趙建波;李騰;;基于情境相似的知識個性化推薦系統(tǒng)研究[J];計算機(jī)工程與科學(xué);2016年03期
4 蔣文明;張偉凡;裴雯;;大學(xué)生智能手機(jī)使用特點的調(diào)查報告——以合肥市四所高校為例[J];合肥師范學(xué)院學(xué)報;2015年06期
5 張玉潔;杜雨露;孟祥武;;組推薦系統(tǒng)及其應(yīng)用研究[J];計算機(jī)學(xué)報;2016年04期
6 張超;秦永彬;黃瑞章;;結(jié)合置信度和SVD的協(xié)同過濾算法[J];計算機(jī)與數(shù)字工程;2015年05期
7 范家兵;王鵬;周渭博;燕京京;;在推薦系統(tǒng)中利用時間因素的方法[J];計算機(jī)應(yīng)用;2015年05期
8 張潔;;關(guān)于大學(xué)生手機(jī)使用情況統(tǒng)計分析報告[J];中國市場;2015年19期
9 孟祥武;紀(jì)威宇;張玉潔;;大數(shù)據(jù)環(huán)境下的推薦系統(tǒng)[J];北京郵電大學(xué)學(xué)報;2015年02期
10 焦東俊;;基于用戶人口統(tǒng)計與專家信任的協(xié)同過濾算法[J];計算機(jī)工程與科學(xué);2015年01期
相關(guān)博士學(xué)位論文 前2條
1 紀(jì)科;融合上下文信息的混合協(xié)同過濾推薦算法研究[D];北京交通大學(xué);2016年
2 孔維梁;協(xié)同過濾推薦系統(tǒng)關(guān)鍵問題研究[D];華中師范大學(xué);2013年
相關(guān)碩士學(xué)位論文 前2條
1 劉英;基于用戶評論的個性化產(chǎn)品推薦系統(tǒng)[D];北京郵電大學(xué);2015年
2 袁琳娜;中學(xué)生網(wǎng)絡(luò)社交:現(xiàn)狀、危機(jī)與反思[D];安徽大學(xué);2013年
,本文編號:1984416
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1984416.html