毫米波通信系統(tǒng)中空間復(fù)用調(diào)度算法的研究
本文選題:毫米波 + 波束訓(xùn)練 ; 參考:《東南大學(xué)》2017年碩士論文
【摘要】:隨著現(xiàn)代通信產(chǎn)業(yè)的快速發(fā)展,人們對(duì)無壓縮高清視頻傳輸、海量下載等無線多媒體應(yīng)用的速率要求日益強(qiáng)烈。當(dāng)前,微波頻段頻譜資源短缺,且難以進(jìn)一步提高頻譜利用率,因此,很難實(shí)現(xiàn)高速率的要求,這一現(xiàn)狀使得高頻段通信受到廣泛關(guān)注。目前尚未得到充分開發(fā)和利用的30~300GHz毫米波頻段頻譜資源充足,勢(shì)必成為下一代超高速通信的理想載波頻段。近年來,世界各國(guó)陸續(xù)開放57~66GHz頻譜資源,高達(dá)9GHz的連續(xù)帶寬為超高速毫米波無線通信提供了無限可能,成為學(xué)術(shù)界和工業(yè)界關(guān)注的重點(diǎn)。密集室內(nèi)無線個(gè)域網(wǎng)作為毫米波的主要應(yīng)用場(chǎng)景,通常需要多條鏈路同時(shí)進(jìn)行通信,然而根據(jù)大部分國(guó)家信號(hào)劃分情況,毫米波通信只能覆蓋2個(gè)信道,所以如何提高系統(tǒng)的空間復(fù)用能力成為提高網(wǎng)絡(luò)容量的重點(diǎn)研究問題之一。本論文針對(duì)毫米波無線通信中的波束訓(xùn)練、空間復(fù)用等關(guān)鍵問題展開研究。首先,本文研究IEEE 802.11ad標(biāo)準(zhǔn)中的波束訓(xùn)練機(jī)制,提出改進(jìn)的信息反饋的波束訓(xùn)練機(jī)制。在本方案中,鏈路發(fā)送端和接收端在進(jìn)行波束訓(xùn)練之后,將波束訓(xùn)練的信息上傳到PCP/AP,PCP/AP收集信息之后生成以位置為索引的波束賦形信息適配表,并不斷定期刷新信息表的信息,以確保信息的實(shí)時(shí)性和可靠性。利用這些信息,一方面PCP/AP能有效進(jìn)行通信資源分配,完成全網(wǎng)資源優(yōu)化調(diào)度,為空間復(fù)用技術(shù)奠定基礎(chǔ),另一方面,相同位置進(jìn)行數(shù)據(jù)傳輸時(shí),直接調(diào)用適配表中的波束賦形信息,無需重新進(jìn)行波束訓(xùn)練,節(jié)約資源,提高通信的效率。其次,本文研究基于協(xié)議干擾模型的空間復(fù)用調(diào)度算法。在本方案中,針對(duì)具體的系統(tǒng)模型定義空間復(fù)用評(píng)估準(zhǔn)則和信息收集機(jī)制,以本文所提的波束訓(xùn)練機(jī)制為基礎(chǔ),將適配表中的信息轉(zhuǎn)化為波束差值表,根據(jù)波束差值表來判斷鏈路能否進(jìn)行空間復(fù)用,通過空間復(fù)用調(diào)度算法,選出對(duì)應(yīng)服務(wù)期中能夠同時(shí)進(jìn)行數(shù)據(jù)傳輸?shù)逆溌?生成可行的鏈路調(diào)度方案。從仿真結(jié)果可以看出,相比較IEEE802.11ad標(biāo)準(zhǔn)的方案以及MSND方案,本文提出的方案能夠有效提高空間復(fù)用的增益。最后,本文分析了協(xié)議干擾模型的局限性,研究基于物理干擾模型的空間復(fù)用調(diào)度算法。在本方案中,以信干噪比為空間復(fù)用的判決準(zhǔn)則,針對(duì)四種不同的場(chǎng)景,利用波束訓(xùn)練得到的信息推導(dǎo)出更加簡(jiǎn)單的評(píng)判表達(dá)式。在考慮空間復(fù)用的調(diào)度方案上,兼顧考慮鏈路調(diào)度的公平性,對(duì)于首先要求的鏈路優(yōu)先安排在服務(wù)期中,而且每一個(gè)服務(wù)期都安排了鏈路,充分利用了服務(wù)期的資源,然后根據(jù)判定結(jié)果合理安排鏈路調(diào)度,以達(dá)到空間復(fù)用的目的。最終的仿真表明,相比較傳統(tǒng)的空間復(fù)用技術(shù),本文提出的基于物理干擾模型的空間復(fù)用方案能夠進(jìn)一步提高空間復(fù)用的增益。
[Abstract]:With the rapid development of modern communication industry, the rate of wireless multimedia applications such as uncompressed high-definition video transmission and mass download is increasingly demanding. At present, the microwave frequency spectrum is short of resources, and it is difficult to further improve the spectrum efficiency. Therefore, it is difficult to achieve the requirement of high rate. At present, the 30~300GHz millimeter-wave frequency band, which has not been fully developed and utilized, has sufficient spectrum resources, which is bound to become the ideal carrier band for the next generation of ultra-high speed communication. In recent years, countries around the world have been opening up 57~66GHz spectrum resources, up to the continuous bandwidth of 9GHz provides unlimited possibilities for ultra-high speed millimeter-wave wireless communications, and has become the focus of academic and industrial attention. As the main application scenario of millimeter-wave, dense indoor wireless personal area network usually requires multiple links to communicate simultaneously. However, according to the situation of signal division in most countries, millimeter-wave communication can only cover two channels. Therefore, how to improve the spatial reuse ability of the system has become one of the key issues in improving the network capacity. In this paper, the key problems of millimeter wave wireless communication, such as beam training and space multiplexing, are studied. Firstly, the beam training mechanism in IEEE 802.11ad standard is studied, and an improved beam training mechanism based on information feedback is proposed. In this scheme, after beam training is carried out by the link sender and receiver, the information of beam training is uploaded to the PCPP / AP / PCPP / AP to collect information, and the beamforming information matching table based on the position index is generated, and the information of the information table is constantly refreshed. To ensure the real-time and reliability of information. Using this information, on the one hand, PCP/AP can effectively allocate the communication resources, complete the optimal scheduling of the whole network resources, and lay the foundation for the spatial multiplexing technology. On the other hand, when the data is transmitted in the same location, The beamforming information in the adaptive table is called directly, so it is not necessary to retrain the beam, thus saving resources and improving the communication efficiency. Secondly, this paper studies spatial multiplexing scheduling algorithm based on protocol interference model. In this scheme, the spatial multiplexing evaluation criteria and information collection mechanism are defined for the specific system models. Based on the beam training mechanism proposed in this paper, the information in the adaptation table is transformed into the beam difference table. According to the beam difference table to determine whether the link can be spatially multiplexed. By using spatial multiplexing scheduling algorithm, the links that can simultaneously transmit data in the corresponding service period are selected, and a feasible link scheduling scheme is generated. The simulation results show that compared with the IEEE802.11ad standard scheme and the MSND scheme, the scheme proposed in this paper can effectively improve the gain of spatial multiplexing. Finally, the limitations of the protocol interference model are analyzed, and the spatial multiplexing scheduling algorithm based on the physical interference model is studied. In this scheme, the signal-to-noise ratio is taken as the decision criterion of spatial multiplexing. For four different scenarios, a simpler evaluation expression is derived from the information obtained by beam training. When considering the scheduling scheme of spatial multiplexing, considering the fairness of link scheduling, the priority of the first required link is in the service cycle, and each service period has arranged the link, making full use of the resources of the service period. Then the link scheduling is arranged according to the decision result to achieve the purpose of spatial multiplexing. Finally, the simulation results show that compared with the traditional spatial multiplexing technology, the spatial multiplexing scheme based on physical interference model can further improve the spatial multiplexing gain.
【學(xué)位授予單位】:東南大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TN928
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 洪一;方體蓮;;數(shù)字波束形成中密集目標(biāo)分辨研究[J];信號(hào)處理;2007年01期
2 孫曉舟;呂繼榮;;多工作模式下數(shù)字波束形成的工程實(shí)現(xiàn)[J];中國(guó)電子科學(xué)研究院學(xué)報(bào);2007年03期
3 J·R·沃林頓 ,邱文杰 ,謝處方;相控朿雷達(dá)的波束形成方案[J];成都電訊工程學(xué)院學(xué)報(bào);1988年S1期
4 H·史蒂斯凱爾 ,邱文杰 ,謝處方;數(shù)字波束形成天}檣躘J];成都電訊工程學(xué)院學(xué)報(bào);1988年S1期
5 陳建峰,黃建國(guó);基于多波束系統(tǒng)的多目標(biāo)高分辨定向新方法[J];電子學(xué)報(bào);1999年03期
6 胡宏林,郭凱,朱近康;強(qiáng)方向性干擾下跳波束通信方式的性能分析[J];通信學(xué)報(bào);2003年09期
7 李秋生;黃隆勝;劉小燕;;等間距圓形陣的波束性能仿真分析[J];北京聯(lián)合大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年04期
8 張玉洪;保錚;;任意分布陣列天線波束寬度的精確估計(jì)[J];西安電子科技大學(xué)學(xué)報(bào);1988年02期
9 查林;;波束域積累檢測(cè)應(yīng)用研究[J];雷達(dá)科學(xué)與技術(shù);2011年02期
10 張亦希,傅君眉,汪文秉;衛(wèi)星陣饋反射面多波束天線賦形波束的性能分析[J];電子與信息學(xué)報(bào);2003年04期
相關(guān)會(huì)議論文 前2條
1 張艷芹;方世良;;波束形成中多目標(biāo)分辨率研究[A];2009年全國(guó)水聲學(xué)學(xué)術(shù)交流暨水聲學(xué)分會(huì)換屆改選會(huì)議論文集[C];2009年
2 趙智勇;才振華;;矢量陣多目標(biāo)譜線挑選MVDR波束形成[A];中國(guó)聲學(xué)學(xué)會(huì)水聲學(xué)分會(huì)2011年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2011年
相關(guān)博士學(xué)位論文 前6條
1 韓璐;橢球粒子與激光有形波束的相互作用研究[D];西安電子科技大學(xué);2014年
2 褚宏云;超高速毫米波無線通信網(wǎng)中繼關(guān)鍵技術(shù)研究[D];東南大學(xué);2015年
3 王彥勛;準(zhǔn)光技術(shù)在天饋及波束變換中的應(yīng)用研究[D];東南大學(xué);2015年
4 陳陽(yáng);水聲陣列信號(hào)處理理論及實(shí)驗(yàn)研究[D];哈爾濱工程大學(xué);2010年
5 徐魁文;天線和逆散射若干問題研究[D];浙江大學(xué);2014年
6 汪加潔;偏心粒子對(duì)有形波束散射及橢球粒子的彩虹特性[D];西安電子科技大學(xué);2011年
相關(guān)碩士學(xué)位論文 前10條
1 廖志高;圓環(huán)形數(shù)字陣列方向圖綜合相關(guān)技術(shù)研究與驗(yàn)證[D];南京理工大學(xué);2015年
2 魏晨;數(shù)字陣列雷達(dá)發(fā)射多波束關(guān)鍵技術(shù)研究[D];電子科技大學(xué);2014年
3 劉東升;基于一種艦載圓柱相控陣天線的波束形成研究[D];中國(guó)艦船研究院;2015年
4 田宣宣;光纖延遲線與多波束應(yīng)用研究[D];電子科技大學(xué);2014年
5 劉力;收發(fā)數(shù)字波束形成系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[D];西安電子科技大學(xué);2014年
6 楊遵立;基于有源天線的LTE系統(tǒng)的波束優(yōu)化[D];西安電子科技大學(xué);2014年
7 張陽(yáng)陽(yáng);陣列系統(tǒng)中的波束形成安全技術(shù)研究[D];東南大學(xué);2015年
8 楊愷;基于非均勻陣列的波束空間DOA估計(jì)研究[D];東南大學(xué);2015年
9 張雅靜;基于鄰居波束對(duì)準(zhǔn)與跟蹤的移動(dòng)Ad Hoc網(wǎng)絡(luò)定向接入?yún)f(xié)議研究[D];南京航空航天大學(xué);2016年
10 劉艷青;基于各向異性電磁超表面的多波束輻射與極化調(diào)控研究[D];東南大學(xué);2016年
,本文編號(hào):1842418
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1842418.html