連接體處基牙不同肩臺寬度對全鋯固定橋強度的影響
本文選題:全鋯固定橋 + 連接體 ; 參考:《河北醫(yī)科大學》2017年碩士論文
【摘要】:目的:本實驗旨在采用牙科計算機輔助設計和計算機輔助制作(computer aided design and computer aided manufacture,CAD/CAM)工藝技術(shù),制作后牙三單位全鋯固定橋,研究全鋯固定橋連接體處基牙不同肩臺寬度對固定橋強度的影響,通過實驗數(shù)據(jù)對臨床全鋯固定橋牙體預備及修復體制作提供參考。方法:1底座及基牙的制作通過對標準下頜模型的底座以及基牙進行設計,參考《口腔修復學》教材中固定義齒的基牙預備原則進行牙體預備。選取模型中右下第一磨牙缺失,右下第二前磨牙和第二磨牙為基牙的三單位全鋯固定橋設計;赖难荔w預備標準為:面均勻磨除1.5mm,軸面磨除1.0mm,軸面聚合度為8°,刃狀或平齦內(nèi)線角圓鈍的直角肩臺,各部位無倒凹、無應力集中區(qū)。根據(jù)實驗設計右下第二前磨牙肩臺寬度為1.0mm,右下第二磨牙肩臺寬度分別為刃狀、0.5mm、1.0mm。2金屬代型制作將設計好的底座以及基牙預備體利用加成硅橡膠印模材制備印模,選擇專用的鑄造蠟以1:1的比例制作底座及基牙預備體蠟型,按標準流程包埋、鑄造、打磨、噴砂完成金屬代型的制作。3修復體的制作將金屬底座以及基牙代型利用加成硅橡膠模仿牙周膜組合之后,用橡皮泥固定在掃描儀觀測臺上,用3Shape TRIOS 2光學印模掃描出預備體的3D數(shù)字化模型,隨即將數(shù)據(jù)導入到3shape Dental System軟件,系統(tǒng)會生成標準形態(tài)的修復體。根據(jù)第三版《口腔解剖生理學》關于右下頜第二前磨牙、第一磨牙和第二磨牙形態(tài)的描述,利用虛擬調(diào)刀修整至實驗所需基牙面厚度為1.5mm,軸壁厚度為1.0mm,連接體橫截面積為16mm2的近矩形截面,連接體齦以及頰舌外展隙為“U”型,曲率半徑均為0.90mm,冠邊緣處與金屬代型的肩臺平滑相接。即全鋯固定橋右下第二前磨牙的肩臺寬度為1.0mm,右下第二磨牙的肩臺寬度分別為刃狀、0.5mm、1.0mm,然后把所得到的數(shù)據(jù)傳遞給cam切割機。采用賽瓷系列氧化鋯加工18個全鋯固定橋。具體分組:右下第二磨牙的肩臺寬度刃狀、0.5mm、1.0mm各6個,分別定為a、b、c組。4抗壓縮破壞力實驗將制作完成的全鋯固定橋用dmg樹脂水門汀分別粘固于金屬代型上,指壓就位,以50n的垂直力持續(xù)加壓10分鐘,去除多余的粘固劑,在37℃蒸餾水存儲24小時后備用。將粘結(jié)好的全鋯固定橋按順序依次置于萬能試驗機上進行強度測試,加載頭以0.5mm/min的恒定速度垂直加載于金屬墊襯墊硅橡膠緩沖材料的橋體上,直至全鋯固定橋破壞為止,記錄數(shù)值。5統(tǒng)計學分析使用spss21.0軟件對實驗數(shù)據(jù)進行統(tǒng)計學分析。kolmogorov-smirnov和shapiro-wilk檢驗數(shù)據(jù)是否符合正態(tài)分布(ɑ=0.1)。levene檢驗對數(shù)據(jù)進行方差齊性檢驗(ɑ=0.1)。在本次實驗數(shù)據(jù)均滿足正態(tài)分布及方差齊性檢驗(p0.1),實驗數(shù)據(jù)可以用均數(shù)?標準差表示(sx?)。用單因素方差分析比較不同肩臺寬度全鋯固定橋的抗壓縮破壞力有無組間差別,若組間有差別再用student-newman-keuls進行組間的兩兩比較。p0.05認為有統(tǒng)計學意義。6全鋯固定橋樣本斷裂分析利用高速攝像機和數(shù)碼光學顯微鏡對所有的18例全鋯固定橋樣本進行斷裂分析。結(jié)果:1各組全鋯固定橋的抗壓縮破壞力值a組(刃狀肩臺):(4457.33?564.06)n;b組(0.5mm肩臺):(6439.65?551.32)n;c組(1.0mm肩臺):(6513.00?609.38)n。2統(tǒng)計學分析實驗數(shù)據(jù)各組實驗數(shù)據(jù)均符合正態(tài)分布及方差齊性,對各組全鋯固定橋的抗壓縮破壞力實驗數(shù)據(jù)進行單因素方差分析:各組間的抗壓縮破壞力有統(tǒng)計學意義(P0.05),即組間存在差異。進行組間的兩兩比較,A組與B組、A組與C組之間差異有統(tǒng)計學意義(P0.05);而B組與C組之間差異無統(tǒng)計學意義(P0.05)。3樣本觀察利用高速攝像機和數(shù)碼光學顯微鏡對所有的18例全鋯固定橋樣本進行斷裂分析。所有全鋯固定橋的實驗樣本均為遠中連接體處的斜型折裂。A組與B組的斷裂均越過固位體邊緣的外緣和內(nèi)緣,表現(xiàn)為累及固位體組織面的斷裂,裂紋起源于固位體邊緣的拉應力集中區(qū),通過連接體,然后向加載點擴展延伸至斷裂破壞;C組的斷裂表現(xiàn)為越過固位體邊緣外緣,未越過其內(nèi)緣,故未累及固位體組織面,裂紋源于連接體齦端的拉應力集中區(qū),通過連接體,然后向加載點擴展延伸至斷裂破壞。結(jié)論:1全鋯固定橋連接體處基牙肩臺寬度為0.5mm和1.0mm的強度顯著優(yōu)于刃狀肩臺的強度,而寬度為0.5mm和1.0mm的強度無統(tǒng)計學差異,建議臨床全鋯固定橋基牙肩臺寬度預備在0.5mm以上,才能提高其強度。2全鋯固定橋連接體處基牙肩臺寬度為刃狀和0.5mm的斷裂形式與1.0mm肩臺的斷裂形式不同。肩臺寬度為刃狀和0.5mm的全鋯固定橋斷裂均越過固位體邊緣的外緣和內(nèi)緣,表現(xiàn)為累及固位體組織面的斷裂,肩臺寬度為1.0mm的全鋯固定橋斷裂越過固位體邊緣外緣,未越過其內(nèi)緣,表現(xiàn)為未累及固位體組織面的斷裂。
[Abstract]:Objective: the purpose of this experiment was to make a three unit zirconium fixed bridge with computer aided design and computer aided manufacture, CAD/CAM technology and study the influence of different shoulder width of the base teeth on the strength of the fixed bridge. Provide reference for the preparation and repair of the clinical full zirconium fixed bridge. Methods: 1 base and base teeth are made by designing the base of the standard mandibular model and the base teeth, and referring to the basic tooth preparation principle of the fixed denture in the textbook of Stomatology. The right lower first molar is missing and the right lower two front grinding is selected. The teeth and the second molar were the three unit zirconium fixed bridge for the base teeth. The standard of tooth preparation for the base teeth was the uniform grinding of the 1.5mm, the axis surface grinding out of 1.0mm, the axial surface polymerization degree of 8 degrees, the edge of the edge or the inner corner of the gingiva, without the concave and stress concentration areas. The shoulder width of the two front molar of the right lower part was 1.0mm, The shoulder width of the right lower two molar is divided into the edge, 0.5mm, 1.0mm.2 metal generation, making the designed base and the base tooth preparation by adding the silicone rubber impression material to make the impression. The special casting wax is selected to make the base and the base tooth preparation wax type in the proportion of 1:1, and the metal generation is completed according to the standard process, casting, grinding and sandblasting. After making the.3 repair body, the metal base and the base tooth generation using the addition of silicon rubber imitated the periodontal membrane combination, with the rubber mud fixed on the scanner observation platform, the 3D digital model of the preparatory body is scanned with the 3Shape TRIOS 2 optical impression, then the data is imported into the 3shape Dental System software, the system will generate the standard form. According to the description of the shape of the right mandibular second premolar, the first molar and the second molar, according to the third edition of the oral anatomy and physiology, the thickness of the base tooth is 1.5mm, the thickness of the axial wall is 1.0mm, the transverse section of the connecting body is 16mm2, and the joint gingiva and the abduction gap of the buccal tongue are " U "type, the radius of curvature is 0.90mm, and the edge of the crown is smooth with the shoulder of metal generation. That is, the shoulder width of the two premolar of the right lower two molar of the total zirconium fixed bridge is 1.0mm, the shoulder width of the right lower two molar is edged, 0.5mm, 1.0mm, and then the obtained data is passed to the cam cutting machine. 18 zirconium zirconium is processed with Zr series. Fixed bridge. Specific groups: the shoulder width edge of the right lower two molar, 0.5mm, 1.0mm each 6, respectively, a, B, C group.4 compression failure experiment will be made of the completed zirconium fixed bridge DMG resin cement paste on the metal generation respectively, the finger pressure is in place, the vertical force of 50N for 10 minutes, remove the superfluous cement, at 37 degrees C The distilled water is stored for 24 hours after storage. The strength of the fixed zirconium fixed bridge is placed on the universal test machine in sequence, and the load head is loaded on the bridge body of the silicone rubber cushion material of the metal pad at a constant speed of 0.5mm/min until the total zirconium fixed bridge is damaged to stop, and the record value.5 statistics analysis uses spss21.0. Whether the.Kolmogorov-smirnov and Shapiro-Wilk test data are consistent with the normal distribution (=0.1).Levene test for the variance homogeneity test of the data (=0.1). The experimental data all meet the normal distribution and variance homogeneity test (P0.1), and the experimental data can be expressed by the mean? Standard deviation (SX?). The single factor analysis of variance compared with the different shoulder and platform width of the Zr fixed bridge, there is no difference between groups, if there is a difference between the groups with the difference of Student-Newman-Keuls between the 22 and.P0.05, there is a statistically significant difference between.6 and Zr fixed bridge sample fracture analysis using high speed image machine and digital optical microscope for all 18 cases Total zirconium fixed bridge samples for fracture analysis. Results: 1 group A (4457.33? 564.06) n; group B (0.5mm shoulder): (6439.65? 551.32) n; group C (1.0mm shoulder): (6513? 609.38): (6513? 609.38) statistical analysis of the experimental data all conforms to normal distribution and homogeneity of variance, to each group A single factor variance analysis of the experimental data of the anti compression failure force of the zirconium fixed bridge: there was significant difference in the anti compression destructive force between each group (P0.05), that is, the difference between groups was 22, the difference between group A and B, the difference between group A and C group was statistically significant (P0.05), but there was no statistically significant difference between group B and C group (P0.05).3 sample All 18 samples of all zirconium fixed bridge were analyzed by high speed camera and digital optical microscope. All the experimental samples of all zirconia fixed bridges were that the fracture of the oblique fracture.A group and the B group across the far middle connection crossed the outer and inner edge of the edge of the solid body. The tensile stress concentration region originating from the edge of the retainer, through the connecting body, and then extending to the fracture failure by extending to the loading point, the fracture of the C group is over the outer edge of the solid body edge, which does not cross the inner edge of the solid body, so the fracture is not involved in the retainer's tissue surface. The crack originates from the tension stress concentration area of the gingival end of the connecting body, and then extends to the loading point through the connection body. Conclusion: 1 the strength of the abutment width of 0.5mm and 1.0mm is significantly better than that of the blade abutment, while the strength of the width of 0.5mm and 1.0mm is not statistically different. It is suggested that the width of the abutment abutment of the clinical all zirconium fixed bridge foundation is more than 0.5mm to improve the strength of its strength.2 all zirconium fixed bridge connection. The fracture form of the width of the abutment with the width of the abutment and the 0.5mm is different from that of the 1.0mm shoulder. The fracture of the full zirconium fixed bridge with the width of the shoulder and the 0.5mm is all over the outer edge and the inner edge of the retainer edge, which shows the fracture of the retainer, and the whole zirconium fixed bridge with the width of the shoulder width is 1.0mm over the edge of the solid body. It did not exceed its inner edge, but it did not involve the fracture of retainer tissue surface.
【學位授予單位】:河北醫(yī)科大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.7;R783
【參考文獻】
相關期刊論文 前10條
1 關昌俊;陳小冬;趙佳明;戰(zhàn)德松;劉洋;李振春;李曉娜;邢文忠;;Cercon CAD/CAM系統(tǒng)氧化鋯全瓷冠橋2238例的返工分析[J];口腔醫(yī)學;2014年06期
2 蔚勁濤;張少鋒;高婧;郭嘉文;田蓓敏;溫宣;武小紅;;4247件氧化鋯全瓷修復體臨床療效的回顧性研究[J];牙體牙髓牙周病學雜志;2014年04期
3 鄭志強;林捷;李厚軒;陳群;盧兆杰;;3種不同內(nèi)冠材料固定橋應力分布的有限元分析[J];口腔醫(yī)學研究;2013年11期
4 陳濟芬;丁宏;楊重恒;;不同氧化鋯底冠的邊緣設計對其全冠抗疲勞性和抗折性的研究[J];國際口腔醫(yī)學雜志;2013年02期
5 張麗萍;牟月照;;氧化鋯全瓷固定橋不同連接區(qū)設計的力學分析[J];中國社區(qū)醫(yī)師(醫(yī)學專業(yè));2012年16期
6 丁旭;丁毅;章加宇;汪大林;;下頜后牙種植固定橋不同橋體長度和連接體面積時受載的三維有限元分析[J];口腔頜面修復學雜志;2012年03期
7 魏雅芹;施亮;李蜀光;;氧化鋯長橋連接點的抗壓強度研究[J];廣東牙病防治;2011年08期
8 關達榮;張佩芬;;氧化鋯全瓷冠橋修復體臨床效果評價[J];中國實用口腔科雜志;2011年02期
9 李曉萌;高平;王永先;李佳;;計算機輔助設計與制造固定橋連接體受力的三維有限元分析[J];中國組織工程研究與臨床康復;2010年09期
10 俞青;安濤;戴寧;陳淵華;;固定橋支架計算機輔助設計系統(tǒng)的研制[J];實用口腔醫(yī)學雜志;2009年05期
相關會議論文 前1條
1 韓曉輝;薛化文;;一例氧化鋯固定橋失敗原因的理論分析[A];第七次全國口腔修復工藝學學術(shù)交流會論文匯編[C];2011年
相關碩士學位論文 前2條
1 徐平;下頜后牙三單位全瓷固定橋不同連接體設計的三維有限元分析[D];第四軍醫(yī)大學;2008年
2 張麗萍;全瓷固定橋不同連接區(qū)設計的力學分析[D];山東大學;2005年
,本文編號:1797631
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1797631.html