天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁 > 碩博論文 > 信息類碩士論文 >

基于自適應(yīng)分?jǐn)?shù)階階次的圖像增強(qiáng)和圖像匹配

發(fā)布時(shí)間:2018-04-13 14:30

  本文選題:圖像增強(qiáng) + 圖像匹配; 參考:《南昌航空大學(xué)》2017年碩士論文


【摘要】:圖像增強(qiáng)和圖像匹配是圖像處理和計(jì)算機(jī)視覺領(lǐng)域的兩個(gè)基礎(chǔ)性的重要研究內(nèi)容。傳統(tǒng)的圖像增強(qiáng)和圖像匹配方法大多數(shù)是基于整數(shù)階微積分,對(duì)圖像中存在弱導(dǎo)數(shù)性質(zhì)的弱邊緣和弱紋理效果不理想。分?jǐn)?shù)階微分具有在增強(qiáng)圖像的同時(shí)可以更好地保留圖像中的弱邊緣和弱紋理細(xì)節(jié)信息的優(yōu)良特性,但已有的基于分?jǐn)?shù)階微分的圖像增強(qiáng)方法,需要通過人工尋找最佳階次,缺乏微分階次自適應(yīng)性;在圖像匹配中,將SIFT(Scale Invariant Feature Transform)匹配算法與分?jǐn)?shù)階微分相結(jié)合,在模糊圖像和弱紋理圖像中能提取到更多的特征點(diǎn),從而提高了匹配的精度,但是最佳微分階次的選擇仍然需要人工調(diào)整,費(fèi)時(shí)費(fèi)力。因此,本文針對(duì)這兩個(gè)問題展開研究,具體工作如下:1.通過分析分?jǐn)?shù)階微分對(duì)信號(hào)的作用,構(gòu)造了在分?jǐn)?shù)階微分圖像增強(qiáng)中的微分階次自適應(yīng)模型,該模型以反正切函數(shù)為原型,以圖像的梯度信息、局部信息熵、亮度和對(duì)比度為自變量,建立了分?jǐn)?shù)階微分階次與圖像局部信息之間的關(guān)系,從而可以根據(jù)圖像的局部特征信息自動(dòng)計(jì)算圖像中各個(gè)像素點(diǎn)的最佳階次,并將該模型應(yīng)用到分?jǐn)?shù)階微分Tiansi算子的圖像增強(qiáng)中。為了驗(yàn)證本文模型的有效性,選用標(biāo)準(zhǔn)圖像庫中的多幅紋理圖像進(jìn)行實(shí)驗(yàn),對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了定性和定量分析,并與二階微分Laplacian算子,Tiansi算子進(jìn)行比較。理論分析和實(shí)驗(yàn)結(jié)果均可表明本文建立模型的有效性,對(duì)灰度圖像可以得到持續(xù)變化的增強(qiáng)效果,接近于最佳分?jǐn)?shù)階微分階次的增強(qiáng)實(shí)驗(yàn)效果,符合人類在視覺上的感受。2.提出了一種自適應(yīng)分?jǐn)?shù)階的SIFT算法,用于圖像匹配。算法在Riemann-Liouvill(R-L)分?jǐn)?shù)階微分的基礎(chǔ)上,設(shè)計(jì)了一種新的分?jǐn)?shù)階微分掩膜,并將其融入到SIFT算法中,提取到更多精確有效的關(guān)鍵點(diǎn),從而提高了SIFT算法的匹配精度;然后根據(jù)圖像的局部特征,構(gòu)造了分?jǐn)?shù)階微分階次自適應(yīng)數(shù)學(xué)模型。該模型以反正切函數(shù)為原型,以圖像的梯度信息、局部信息熵為自變量,建立了分?jǐn)?shù)階微分階次與圖像局部特征信息之間的關(guān)系,從而可以根據(jù)圖像的局部特征信息自動(dòng)計(jì)算圖像中各個(gè)像素點(diǎn)的最佳階次;為了驗(yàn)證本文算法和模型的有效性,選用標(biāo)準(zhǔn)庫中的圖像和真實(shí)圖像進(jìn)行實(shí)驗(yàn),與原始SIFT算法和基于分?jǐn)?shù)階微分的SIFT算法進(jìn)行比較;并對(duì)算法的效率和最佳微分階次進(jìn)行分析,理論分析和實(shí)驗(yàn)結(jié)果均表明本文算法的有效性。
[Abstract]:Image enhancement and image matching are two basic research contents in the field of image processing and computer vision.Most of the traditional image enhancement and image matching methods are based on integral order calculus, which is not ideal for weak edges and weak textures with weak derivative in images.Fractional differential has the advantages of keeping the weak edge and weak texture details in the image while enhancing the image. However, the existing image enhancement methods based on fractional differential need to find the best order manually.In image matching, the combination of SIFT(Scale Invariant Feature transform algorithm and fractional differential algorithm can extract more feature points in fuzzy image and weak texture image, so the accuracy of matching is improved.However, the choice of optimal differential order still needs manual adjustment, which is time-consuming and laborious.Therefore, this paper focuses on these two problems, the specific work is as follows: 1.By analyzing the effect of fractional differential on signal, the differential order adaptive model in fractional differential image enhancement is constructed. The model is based on the inverse tangent function, the gradient information of the image and the local information entropy.Brightness and contrast are independent variables. The relationship between fractional differential order and image local information is established, so that the best order of each pixel in the image can be automatically calculated according to the local characteristic information of the image.The model is applied to image enhancement of fractional differential Tiansi operator.In order to verify the validity of the model in this paper, several texture images in the standard image library are selected for experiments. The experimental results are qualitatively and quantitatively analyzed, and compared with the second-order differential Laplacian operator, Tiansi operator.Both the theoretical analysis and the experimental results show that the model is effective, and the enhancement effect of the gray image can be continuously changed, which is close to the experimental effect of the best fractional differential order, and accords with the human visual perception.An adaptive fractional order SIFT algorithm is proposed for image matching.Based on the Riemann-Liouvilli R-L-based fractional differential, a new fractional differential mask is designed, which is integrated into the SIFT algorithm to extract more precise and effective key points, thus improving the matching accuracy of the SIFT algorithm.Then, according to the local characteristics of the image, a fractional differential order adaptive mathematical model is constructed.In this model, the relationship between fractional differential order and local feature information is established by using the gradient information of image and the entropy of local information as independent variables, using the inverse tangent function as the prototype, and taking the gradient information of image and the entropy of local information as independent variables.In order to verify the validity of the algorithm and model, we can automatically calculate the best order of each pixel in the image according to the local feature information of the image. In order to verify the validity of the algorithm and the model, we choose the image and the real image in the standard library to carry on the experiment.Compared with the original SIFT algorithm and the fractional differential based SIFT algorithm, the efficiency and optimal differential order of the algorithm are analyzed. The theoretical analysis and experimental results show the effectiveness of the proposed algorithm.
【學(xué)位授予單位】:南昌航空大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 王琪;張鐵;張曉夢(mèng);張祥德;;基于SIFT和SDM的虹膜定位方法[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2017年02期

2 鄒承明;侯小碧;馬靜;;基于幾何學(xué)圖像配準(zhǔn)的SIFT圖像拼接算法[J];華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年04期

3 云海姣;吳志勇;王冠軍;劉雪超;梁敏華;;結(jié)合直方圖均衡和模糊集理論的紅外圖像增強(qiáng)[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2015年08期

4 吳軍;姚澤鑫;程門門;;融合SIFT與SGM的傾斜航空影像密集匹配[J];遙感學(xué)報(bào);2015年03期

5 毋立芳;侯亞希;許曉;高源;漆薇;周鵬;;基于緊致全姿態(tài)二值SIFT的人臉識(shí)別[J];儀器儀表學(xué)報(bào);2015年04期

6 許佳佳;張葉;張赫;;基于改進(jìn)Harris-SIFT算子的快速圖像配準(zhǔn)算法[J];電子測(cè)量與儀器學(xué)報(bào);2015年01期

7 葛盼盼;陳強(qiáng);顧一禾;;基于Harris角點(diǎn)和SURF特征的遙感圖像匹配算法[J];計(jì)算機(jī)應(yīng)用研究;2014年07期

8 曾接賢;李煒燁;;曲率尺度空間與鏈碼方向統(tǒng)計(jì)的角點(diǎn)檢測(cè)[J];中國圖象圖形學(xué)報(bào);2014年02期

9 陳慶利;黃果;張秀瓊;楊俊;項(xiàng)煒;;數(shù)字圖像的Caputo分?jǐn)?shù)階微分增強(qiáng)[J];計(jì)算機(jī)輔助設(shè)計(jì)與圖形學(xué)學(xué)報(bào);2013年04期

10 趙青;何建華;溫鵬;;基于平均梯度和方向?qū)Ρ榷鹊膱D像融合方法[J];計(jì)算機(jī)工程與應(yīng)用;2012年24期

,

本文編號(hào):1744948

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1744948.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶360fe***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
99久久国产综合精品二区| 精品熟女少妇av免费久久野外| 国产成人一区二区三区久久| 少妇一区二区三区精品| 午夜精品久久久99热连载| 丁香六月啪啪激情综合区| 尤物久久91欧美人禽亚洲| 日本人妻的诱惑在线观看| 人妻内射精品一区二区| 熟女体下毛荫荫黑森林自拍| 国产女优视频一区二区| 国产精品久久女同磨豆腐| 在线日韩欧美国产自拍| 极品熟女一区二区三区| 国产精品一区二区三区激情| 欧美国产日产在线观看| 久久精品中文扫妇内射| 欧美自拍偷自拍亚洲精品| 日本深夜福利视频在线| 久一视频这里只有精品| 亚洲一区精品二人人爽久久| 亚洲最新的黄色录像在线| 视频在线观看色一区二区| 欧美日韩亚洲综合国产人| 最新午夜福利视频偷拍| 99视频精品免费视频| 精品少妇人妻av免费看| 国产亚洲欧美另类久久久| 日本美国三级黄色aa| 天堂热东京热男人天堂| 日韩一区二区三区久久| 91日韩在线视频观看| 久久99夜色精品噜噜亚洲av| 国产又粗又猛又爽色噜噜| 日韩色婷婷综合在线观看| 国产成人国产精品国产三级 | 日韩在线欧美一区二区| 亚洲清纯一区二区三区| 日韩毛片视频免费观看| 日韩特级黄色大片在线观看| 黄色三级日本在线观看|