天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

當(dāng)前位置:主頁(yè) > 碩博論文 > 信息類碩士論文 >

面向監(jiān)控視頻的受電弓與接觸網(wǎng)支柱檢測(cè)

發(fā)布時(shí)間:2018-03-25 12:22

  本文選題:受電弓 切入點(diǎn):接觸網(wǎng) 出處:《西南交通大學(xué)》2017年碩士論文


【摘要】:當(dāng)前我國(guó)高速鐵路事業(yè)正在快速發(fā)展,"四橫四縱"網(wǎng)絡(luò)已基本形成,運(yùn)行車次和速度都在不斷增加,鐵路的安全運(yùn)行也越來(lái)越受到重視,而供電系統(tǒng)的安全在這中間扮演著關(guān)鍵角色。為了滿足不斷提高的對(duì)鐵路供電系統(tǒng)安全檢測(cè)和監(jiān)測(cè)的要求,緩解人工檢測(cè)壓力,實(shí)現(xiàn)自動(dòng)化、智能化的弓網(wǎng)系統(tǒng)安全巡檢,基于圖像處理技術(shù)的檢測(cè)和監(jiān)測(cè)手段越來(lái)越得到關(guān)注。本文的研究工作是按照6C系統(tǒng)中的接觸網(wǎng)安全巡檢裝置和受電弓滑板監(jiān)測(cè)裝置的技術(shù)規(guī)范來(lái)展開的。本文算法以動(dòng)車組車頂圖像和接觸網(wǎng)巡檢圖像為實(shí)驗(yàn)數(shù)據(jù),利用圖像處理和機(jī)器學(xué)習(xí)的方法實(shí)現(xiàn)了對(duì)圖像中的目標(biāo)設(shè)備的智能檢測(cè)提取,最后通過(guò)實(shí)驗(yàn)測(cè)試也驗(yàn)證了本文所提出的算法的有效性。本文的主要工作及創(chuàng)新內(nèi)容包括以下幾個(gè)方面:在對(duì)圖像的預(yù)處理過(guò)程中,首先研究采用受限對(duì)比度自適應(yīng)直方圖均衡化算法(Contrast Limited Adaptive Histogram Equalization,CLAHE)對(duì)存在霧氣影響、對(duì)比度不明顯的圖像進(jìn)行圖像增強(qiáng)處理。然后,結(jié)合Hough變換和Canny算法對(duì)車頂圖像進(jìn)行傾角檢測(cè),再用透視變換進(jìn)行圖像矯正。最后,利用旋轉(zhuǎn)投影法對(duì)接觸網(wǎng)巡檢圖像進(jìn)行傾角檢測(cè),再用仿射變換進(jìn)行接觸網(wǎng)圖像矯正。在受電弓檢測(cè)中,本文采用Sobel算子和形態(tài)學(xué)操作對(duì)受電弓區(qū)域進(jìn)行粗提取。然后,利用Paralleled-Gabor變換提取受電弓區(qū)域的方向性特征。最后研究利用多個(gè)支持向量機(jī)(Support Vector Machine,SVM)分類器的決策融合方法實(shí)現(xiàn)受電弓區(qū)域的精確檢測(cè)提取。在接觸網(wǎng)支柱檢測(cè)中,研究了采用檢測(cè)圖像滅點(diǎn)的方式得到接觸網(wǎng)圖像的透視信息。然后,根據(jù)鐵軌與支柱的相對(duì)位置關(guān)系,利用透視信息得到支柱區(qū)域位置并采樣得到支柱疑似區(qū)域圖像。最后采用卷積神經(jīng)網(wǎng)絡(luò)實(shí)現(xiàn)對(duì)巡檢圖像中接觸網(wǎng)支柱區(qū)域的檢測(cè)提取。本文對(duì)現(xiàn)有動(dòng)車組車頂圖像和接觸網(wǎng)巡檢圖像數(shù)據(jù)集進(jìn)行了實(shí)驗(yàn)測(cè)試。結(jié)果表明,本文算法具有較好的適用性,得到了理想的識(shí)別率,驗(yàn)證了本文算法具有一定的工程應(yīng)用價(jià)值。
[Abstract]:At present, high speed railway is developing rapidly in our country. The network of "four horizontal and four vertical" has been basically formed, the number of trains and the speed are increasing, and the safe operation of railway has been paid more and more attention. The safety of the power supply system plays a key role in this process. In order to meet the increasing requirements for the safety detection and monitoring of the railway power supply system, relieve the pressure of manual inspection, and realize automatic and intelligent safety inspection of the pantograph and catenary system, More and more attention has been paid to the detection and monitoring methods based on image processing technology. The research work in this paper is carried out according to the technical specifications of catenary safety inspection device and pantograph slide monitoring device in 6C system. The algorithm takes the roof image of the EMU and the patrol image of the catenary as the experimental data. The method of image processing and machine learning is used to realize the intelligent detection and extraction of the target equipment in the image. Finally, the effectiveness of the proposed algorithm is verified by experimental tests. The main work and innovations of this paper include the following aspects: in the process of image preprocessing, In this paper, the constrained contrast adaptive histogram equalization algorithm (Contrast Limited Adaptive Histogram equalization) is first studied to enhance the image with the influence of fog and the contrast is not obvious. Then, the inclination angle of the roof image is detected by combining the Hough transform and Canny algorithm. Finally, using the rotation projection method to detect the obliquity of the patrol image of the catenary, and then the affine transformation to correct the image of the catenary. In the pantograph detection, In this paper, Sobel operator and morphological operation are used to extract the pantograph region. Then, The directional feature of pantograph region is extracted by Paralleled-Gabor transform. Finally, a decision fusion method based on support vector machine (SVM) support Vector machine (SVM) classifier is proposed to detect and extract pantograph region accurately. The perspective information of the catenary image is obtained by detecting the vanishing point of the image. Then, according to the relative position relationship between the rail and the pillar, Using the perspective information to get the position of the pillar area and sampling the image of the suspected pillar area. Finally, using convolution neural network to realize the detection and extraction of the OCS pillar area in the patrol image. In this paper, the existing EMU roof map is presented. The image and catenary patrol image data sets are tested experimentally. The results show that, The algorithm in this paper has good applicability, and the ideal recognition rate is obtained, which verifies that this algorithm has certain engineering application value.
【學(xué)位授予單位】:西南交通大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP391.41

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 楊衛(wèi)中;徐銀麗;喬曦;饒偉;李道亮;李振波;;基于對(duì)比度受限直方圖均衡化的水下海參圖像增強(qiáng)方法[J];農(nóng)業(yè)工程學(xué)報(bào);2016年06期

2 莫圣陽(yáng);謝慶華;駱少明;譚志忠;呂文閣;;基于3D視覺(jué)技術(shù)的受電弓磨耗檢測(cè)系統(tǒng)設(shè)計(jì)[J];機(jī)電工程技術(shù);2015年09期

3 葉珍;何明一;;PCA與移動(dòng)窗小波變換的高光譜決策融合分類[J];中國(guó)圖象圖形學(xué)報(bào);2015年01期

4 吳迪;朱青松;;圖像去霧的最新研究進(jìn)展[J];自動(dòng)化學(xué)報(bào);2015年02期

5 ;基于雙目視覺(jué)的受電弓碳滑板磨耗檢測(cè)[J];電子技術(shù);2013年12期

6 韓志偉;劉志剛;張桂南;楊紅梅;;非接觸式弓網(wǎng)圖像檢測(cè)技術(shù)研究綜述[J];鐵道學(xué)報(bào);2013年06期

7 雷蕾;王曉丹;邢雅瓊;畢凱;;結(jié)合SVM和DS證據(jù)理論的多極化HRRP分類研究[J];控制與決策;2013年06期

8 雷蕾;王曉丹;;結(jié)合SVM與DS證據(jù)理論的信息融合分類方法[J];計(jì)算機(jī)工程與應(yīng)用;2013年11期

9 陳維榮;馮倩;張健;于國(guó)旺;李哲;;受電弓滑板狀態(tài)監(jiān)測(cè)的圖像目標(biāo)提取[J];西南交通大學(xué)學(xué)報(bào);2010年01期

10 王蘭;吳謹(jǐn);;一種改進(jìn)的Canny邊緣檢測(cè)算法[J];微計(jì)算機(jī)信息;2010年02期



本文編號(hào):1663109

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1663109.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶3a720***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com
日本婷婷色大香蕉视频在线观看| 亚洲中文字幕剧情在线播放| 国产麻豆视频一二三区| 国产在线一区二区免费| 久一视频这里只有精品| 偷自拍亚洲欧美一区二页| 熟女高潮一区二区三区| 日韩欧美精品一区二区三区| 日韩偷拍精品一区二区三区 | 日韩av生活片一区二区三区| 好吊妞视频这里有精品| 日韩高清毛片免费观看| 国产福利在线播放麻豆| 国产小青蛙全集免费看| 国产精品不卡高清在线观看| 日本中文字幕在线精品| 欧美乱码精品一区二区三| 黄色国产自拍在线观看| 91欧美日韩国产在线观看| 日韩在线欧美一区二区| 人体偷拍一区二区三区| 日韩一区欧美二区国产| 熟女少妇久久一区二区三区| 日韩高清中文字幕亚洲| 日韩一区二区三区免费av| 激情亚洲一区国产精品久久| 久久黄片免费播放大全| 免费特黄一级一区二区三区| 最新日韩精品一推荐日韩精品| 午夜资源在线观看免费高清| 丝袜人妻夜夜爽一区二区三区| 亚洲男女性生活免费视频| 免费黄色一区二区三区| 久久精品国产熟女精品| 亚洲欧美一二区日韩高清在线| 久久99精品国产麻豆婷婷洗澡| 国产成人午夜在线视频| 欧美同性视频免费观看| 精品久久久一区二区三| 99久热只有精品视频免费看| 激情三级在线观看视频|