暗硅時代多核系統(tǒng)資源管理算法研究
發(fā)布時間:2018-02-27 01:19
本文關鍵詞: 暗硅 熱設計功耗 多核系統(tǒng) 動態(tài)規(guī)劃 應用映射 模擬退火 反饋調整 出處:《中國科學技術大學》2017年碩士論文 論文類型:學位論文
【摘要】:集成電路制造工藝的發(fā)展減小了晶體管的特征尺寸,理論上單位面積的芯片可集成更多晶體管而功耗密度保持不變。但是,當工藝節(jié)點發(fā)展到22nm以下,泄漏功耗開始主導晶體管功耗,并隨著工藝節(jié)點的縮小呈指數(shù)級增長,這引發(fā)了芯片的過熱問題。業(yè)界預測:當工藝節(jié)點繼續(xù)往前發(fā)展,芯片上將會有更多的功能模塊不能同時處于全頻率工作狀態(tài),即總是部分處于開啟而其他處于關閉狀態(tài),這預示著暗硅時代的到來。單核系統(tǒng)的局限性催生了多核系統(tǒng)的發(fā)展,而集成電路向暗硅發(fā)展的趨勢使系統(tǒng)中的處理器必須合理的開斷和配置以緩解熱問題。多核系統(tǒng)的資源管理算法可根據應用自身的特點,對芯片中熱設計功耗,處理器的開啟數(shù)目和工作頻率等資源進行合理分配,滿足溫度、系統(tǒng)資源約束的同時優(yōu)化系統(tǒng)性能。本文在暗硅背景下,面向于共享式存儲結構的同構多核系統(tǒng),提出了一種資源管理算法。首先,針對具有線程并行性的應用集,根據其在不同處理器數(shù)目和工作頻率的功耗及吞吐特性,利用動態(tài)規(guī)劃配置處理器數(shù)目和工作頻率,實現(xiàn)當前熱設計功耗約束下的系統(tǒng)吞吐最優(yōu)化;其次,以提高散熱效果和降低存取代價為目標,使用模擬退火算法完成應用映射,確定處理器開斷及應用在系統(tǒng)中的布局,減小過熱點出現(xiàn)的幾率,并根據應用布局,通過溫度仿真獲得系統(tǒng)溫度分布;最后,根據有無過熱點的反饋,充分利用系統(tǒng)溫度裕度,循環(huán)迭代地調整熱設計功耗大小,每次調整后重新進行資源配置和應用映射,最終在最大熱設計功耗下獲得系統(tǒng)最優(yōu)性能。本文搭建了系統(tǒng)吞吐、功耗及溫度的仿真環(huán)境,使所提資源管理算法可嵌入于該環(huán)境中一體化完成。文中借助多核架構仿真工具模擬應用在同構系統(tǒng)中的執(zhí)行過程,可獲得應用在不同處理器數(shù)目及工作頻率下的吞吐特性。提取系統(tǒng)架構參數(shù)和運行信息,并轉換為功耗仿真工具的輸入文件,便可獲得應用功耗特性。以吞吐和功耗特性為輸入,算法在調整熱設計功耗的過程中,使用溫度仿真工具進行熱仿真,并能獲得溫度布局。所搭建環(huán)境可靈活地應用于同構多核系統(tǒng),實驗表明,所提調度方法能夠有效的避免過熱點,并優(yōu)化了系統(tǒng)性能,且相比于棋盤式布局,系統(tǒng)最高溫度降低3%,相比開關式調整過熱點的方法,系統(tǒng)吞吐量最大增加約12%。
[Abstract]:The development of integrated circuit manufacturing process reduces the characteristic size of transistors. In theory, more transistors can be integrated into chips per unit area and the power density remains constant. Leakage power starts to dominate transistor power consumption, and increases exponentially as the process node shrinks, causing the chip to overheat. There will be more modules on the chip that can't work at full frequency at the same time, that is, always partially on and off, which bodes well for the advent of the dark silicon era. The limitations of mononuclear systems have spawned the development of multicore systems. The trend of the development of integrated circuits towards dark silicon makes the processors in the system must be switched on and configured reasonably to alleviate the heat problem. The resource management algorithm of multi-core systems can consume the power of thermal design in chips according to the characteristics of the applications. The open number and working frequency of processors are allocated reasonably to satisfy the temperature and system resource constraints and to optimize the system performance. In this paper, an isomorphic multi-core system with shared memory structure is proposed in the background of dark silicon. In this paper, a resource management algorithm is proposed. Firstly, for the application set with thread parallelism, according to the power consumption and throughput characteristics of different processor numbers and working frequencies, dynamic programming is used to configure the number and working frequency of processors. In order to improve the heat dissipation effect and reduce the access cost, simulated annealing algorithm is used to complete the application mapping to determine the switch on and the layout of the processor in the system. According to the application layout, the temperature distribution of the system is obtained by temperature simulation. Finally, according to the feedback of whether there is a hot spot, the system temperature margin is fully utilized, and the power consumption of thermal design is adjusted iteratively and iteratively. Resource configuration and application mapping are redone after each adjustment, and the optimal performance of the system is finally obtained under the maximum thermal design power consumption. In this paper, a simulation environment of system throughput, power consumption and temperature is built. So that the proposed resource management algorithm can be embedded in the environment to be completed. In this paper, the execution process of the application in the isomorphic system is simulated by means of the multi-core architecture simulation tool. It can obtain the throughput characteristics applied in different processor number and working frequency, extract system architecture parameters and operation information, and convert to input file of power emulation tool. With the input of throughput and power consumption characteristics, the algorithm uses the temperature simulation tool to conduct thermal simulation in the process of adjusting the power consumption of thermal design. The environment can be applied to isomorphic multi-core system flexibly. Experiments show that the proposed scheduling method can effectively avoid hot spots and optimize the performance of the system, and compared with the chessboard layout, the proposed scheduling method can be applied to the isomorphic multi-core system flexibly, and compared with the chessboard layout, the proposed scheduling method can effectively avoid the over-hot spots. The maximum temperature of the system is reduced by 3 and the maximum throughput of the system is increased by about 12 percent compared with the switching method of adjusting the hot spot.
【學位授予單位】:中國科學技術大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TN405
【參考文獻】
相關期刊論文 前4條
1 劉陽國;陸俊林;程旭;易江芳;佟冬;劉鋒;;面向異構多核系統(tǒng)芯片的高效動態(tài)帶寬劃分方法[J];計算機輔助設計與圖形學學報;2016年10期
2 周佳佳;李濤;黃小康;;多核同時多線程處理器的線程調度器設計[J];電子技術應用;2016年01期
3 陳云;賈剛勇;李曦;張海鵬;;基于任務行為分析的DVFS機制[J];計算機系統(tǒng)應用;2013年10期
4 吳鋒;李秀梅;朱旭輝;黃哲華;;最速下降法的若干重要改進[J];廣西大學學報(自然科學版);2010年04期
相關碩士學位論文 前1條
1 舒龍昊;系統(tǒng)級動態(tài)熱管理關鍵技術研究[D];中國科學技術大學;2011年
,本文編號:1540508
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1540508.html
最近更新
教材專著