后輪獨(dú)立驅(qū)動(dòng)電動(dòng)汽車電子差速控制方法的研究
本文關(guān)鍵詞: 電子差速 終端滑模 遺傳算法 CarSim 出處:《長春工業(yè)大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
【摘要】:當(dāng)今社會(huì)能源危機(jī)、環(huán)境污染日趨嚴(yán)重,節(jié)能環(huán)保成為當(dāng)今社會(huì)的主要課題。電動(dòng)汽車憑借其無污染、低能耗等特點(diǎn),近幾年得到了迅速地發(fā)展。雖然電動(dòng)汽車發(fā)展迅速,但與傳統(tǒng)的燃油汽車相比,一些關(guān)鍵技術(shù)仍然比較落后。其中,電子差速技術(shù)是電動(dòng)汽車的關(guān)鍵技術(shù)之一。本文基于國內(nèi)外電動(dòng)汽車電子差速控制技術(shù)領(lǐng)域研究成果基礎(chǔ)上進(jìn)行了一定的研究。本文依據(jù)純電動(dòng)汽車的整車動(dòng)力學(xué)結(jié)構(gòu),結(jié)合整車通過多傳感器采集得到的相關(guān)數(shù)據(jù),在Matlab/Simulink環(huán)境下建立9自由度車輛模型。同時(shí)將9自由度整車數(shù)學(xué)模型進(jìn)行線性化和簡化處理,得到7自由度線性系統(tǒng)的狀態(tài)空間模型。通過分析確定車輪滑移率為衡量車輛差速性能優(yōu)劣的重要因素。首先,本文基于標(biāo)準(zhǔn)的??-曲線,設(shè)定模糊規(guī)則,構(gòu)建模糊路面識(shí)別控制器,實(shí)時(shí)估算路面利用附著系數(shù)和最優(yōu)滑移率。在此基礎(chǔ)之上,以各輪最優(yōu)滑移率以及后兩輪滑移率一致為目標(biāo),基于滑模變結(jié)構(gòu)控制算法設(shè)計(jì)電子差速控制器,合理分配兩后輪驅(qū)動(dòng)力矩實(shí)現(xiàn)電子差速的功能。同時(shí)考慮外界干擾以及測量誤差等因素的存在使得系統(tǒng)不夠精確,進(jìn)而將外界干擾不確定項(xiàng)引入到系統(tǒng)狀態(tài)方程中,并基于終端滑模變結(jié)構(gòu)控制理論設(shè)計(jì)電子差速控制器,同時(shí)采用遺傳算法對(duì)終端滑模中的參數(shù)進(jìn)行優(yōu)化設(shè)計(jì),提高電子差速控制器的可靠性。最后,建立Car Sim/Simulink聯(lián)合仿真平臺(tái),設(shè)計(jì)兩種不同的仿真工況,將常規(guī)滑模變結(jié)構(gòu)控制策略和遺傳算法參數(shù)優(yōu)化的終端滑模變結(jié)構(gòu)控制策略進(jìn)行仿真實(shí)驗(yàn)對(duì)比分析,仿真實(shí)驗(yàn)結(jié)果表明本文提出的兩種電子差速控制策略均能實(shí)現(xiàn)車輛的差速功能,而后者具有更好的控制性能。
[Abstract]:Nowadays, energy crisis and environmental pollution are becoming more and more serious. Energy saving and environmental protection have become the main topic of the society. Electric vehicles (EV) have the characteristics of non-pollution and low energy consumption. Electric vehicles (EV) have developed rapidly in recent years, but compared with traditional fuel vehicles, some key technologies are still relatively backward. Electronic differential speed technology is one of the key technologies of electric vehicle. Based on the research results in the field of electronic differential control technology of electric vehicle at home and abroad, this paper does some research. Learning structure. Combined with the whole vehicle through the multi-sensor collection of relevant data. The 9-DOF vehicle model is established in Matlab/Simulink environment, and the mathematical model of 9-DOF vehicle is linearized and simplified. The state space model of a linear system with 7 degrees of freedom is obtained. The wheel slip ratio is determined as an important factor to evaluate the differential speed performance of a vehicle through analysis. Firstly, this paper is based on the standard? ? -curve, set up fuzzy rules, construct fuzzy pavement identification controller, estimate road surface adhesion coefficient and optimal slip ratio in real time. The electronic differential controller is designed based on sliding mode variable structure control algorithm, aiming at the optimal slip ratio of each wheel and the consistent slip ratio of the two rear wheels. The function of electronic differential speed can be realized by reasonably allocating the driving torque of two rear wheels, and the system is not accurate enough due to the existence of external interference and measurement error. Then the external disturbance uncertainty is introduced into the state equation of the system and the electronic differential controller is designed based on the terminal sliding mode variable structure control theory. At the same time genetic algorithm is used to optimize the parameters of the terminal sliding mode. The reliability of the electronic differential controller is improved. Finally, the Car Sim/Simulink joint simulation platform is established and two different simulation conditions are designed. The conventional sliding mode variable structure control strategy and the terminal sliding mode variable structure control strategy optimized by genetic algorithm are compared and analyzed by simulation experiments. The simulation results show that the two electronic differential control strategies proposed in this paper can achieve the differential speed function of the vehicle, and the latter has better control performance.
【學(xué)位授予單位】:長春工業(yè)大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:U469.72;TP273
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 仝光;王強(qiáng);;基于非奇異快速終端滑模的非線性輪胎力控制研究[J];中國工程機(jī)械學(xué)報(bào);2016年03期
2 孟志強(qiáng);邵武;周華安;蘇爍;;基于電流反饋模糊控制算法的光伏模擬器研究[J];湖南大學(xué)學(xué)報(bào)(自然科學(xué)版);2016年02期
3 馬小雨;;模糊PID復(fù)合控制算法的有效改進(jìn)[J];現(xiàn)代電子技術(shù);2016年04期
4 孫明江;段敏;李剛;;基于CarSim的前輪獨(dú)立驅(qū)動(dòng)純電動(dòng)汽車仿真模型建立[J];汽車工程師;2015年08期
5 胡慶雷;王輝;石忠;高慶吉;;航天器新型非奇異飽和終端滑模姿態(tài)控制[J];宇航學(xué)報(bào);2015年04期
6 嚴(yán)運(yùn)兵;彭思侖;;后驅(qū)電動(dòng)輪汽車電子差速控制影響因素分析[J];汽車工程;2014年02期
7 李雪巖;孫有發(fā);劉彩燕;;自適應(yīng)元胞遺傳算法與股票價(jià)格行為分析[J];五邑大學(xué)學(xué)報(bào)(自然科學(xué)版);2011年04期
8 靳立強(qiáng);王軍年;宋傳學(xué);胡長健;;電動(dòng)輪驅(qū)動(dòng)汽車驅(qū)動(dòng)助力轉(zhuǎn)向技術(shù)[J];機(jī)械工程學(xué)報(bào);2010年14期
9 熊璐;余卓平;姜煒;蔣造云;;基于縱向力分配的輪邊驅(qū)動(dòng)電動(dòng)汽車穩(wěn)定性控制[J];同濟(jì)大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
10 王君紅;劉寶;袁若泉;李桂蓮;;一種非線性遺傳算法的設(shè)計(jì)與應(yīng)用[J];計(jì)算機(jī)仿真;2010年02期
相關(guān)會(huì)議論文 前1條
1 張夢潔;田令;;電動(dòng)汽車的發(fā)展現(xiàn)狀及趨勢研究[A];第三屆河南省汽車工程科技學(xué)術(shù)研討會(huì)論文集[C];2006年
相關(guān)博士學(xué)位論文 前1條
1 李剛;線控四輪獨(dú)立驅(qū)動(dòng)輪轂電機(jī)電動(dòng)汽車穩(wěn)定性與節(jié)能控制研究[D];吉林大學(xué);2013年
相關(guān)碩士學(xué)位論文 前5條
1 郭強(qiáng)強(qiáng);載荷相機(jī)掃描系統(tǒng)的滑?刂婆c仿真[D];中國科學(xué)技術(shù)大學(xué);2016年
2 李皓宇;基于GA的算法在城軌運(yùn)行圖優(yōu)化中的應(yīng)用[D];西南交通大學(xué);2015年
3 章昊秋;輪式驅(qū)動(dòng)電動(dòng)汽車驅(qū)動(dòng)系統(tǒng)的研究[D];浙江大學(xué);2007年
4 李志魁;基于CarSim的整車動(dòng)力學(xué)建模與操縱穩(wěn)定性仿真分析[D];吉林大學(xué);2007年
5 馬建國;兩后輪驅(qū)動(dòng)的電動(dòng)汽車的差速控制[D];武漢理工大學(xué);2007年
,本文編號(hào):1466356
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1466356.html