基于零磁通原理的微電流傳感器的研制
本文關(guān)鍵詞:基于零磁通原理的微電流傳感器的研制 出處:《太原理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 微電流傳感器 零磁通 有源補償 無源補償 LabVIEW
【摘要】:高壓電力設(shè)備的絕緣在線監(jiān)測是確保電力系統(tǒng)安全運轉(zhuǎn)的重要技術(shù)手段,其中高精度微電流傳感器是實現(xiàn)電力系統(tǒng)絕緣狀態(tài)在線監(jiān)測不可或缺的工具。它涉及電氣保護、電能計量、電控等相關(guān)領(lǐng)域,擔(dān)負著采集信號的任務(wù),是整個在線監(jiān)測系統(tǒng)中的重要組成部分。因此,電流傳感器的測量精度和工作可靠性與電力系統(tǒng)的安全運轉(zhuǎn)直接相關(guān)。測量用電流傳感器一般安裝在高壓開關(guān)領(lǐng)域,工作時容易受到強電磁場的干擾。并且,在電力線路或設(shè)備的絕緣在線監(jiān)測中,需要測量的泄漏電流的數(shù)量級均在微安級,普通的小電流傳感器難以滿足需求。綜上所述,設(shè)計一種測量精度高,靈敏度好,適用于強電磁場環(huán)境的微電流傳感器對于電氣設(shè)備絕緣狀態(tài)的在線監(jiān)測具有重要研究意義。本文基于零磁通原理研制了一種準(zhǔn)確度可達到0.2級的微電流傳感器。主要研究內(nèi)容如下:首先,將單匝穿心式電流傳感器作為研究對象。根據(jù)電磁感應(yīng)原理建立了電磁式電流傳感器的等效電路圖并推導(dǎo)出誤差公式,得出造成測量誤差的主要原因是激磁電流。根據(jù)誤差公式從電流傳感器的磁芯結(jié)構(gòu)參數(shù)、二次側(cè)負載阻抗、二次側(cè)繞組匝數(shù)、和磁芯材料等幾個方面對影響誤差的因素進行分析,設(shè)計了電流傳感器的感應(yīng)部分。為進一步減小誤差,需增設(shè)外部補償手段。首先闡述了有源補償及無源補償兩種方法。在此基礎(chǔ)上設(shè)計了基于零磁通原理的整體補償方案。該方案將有源電子電路補償方法與三次繞組并聯(lián)阻抗的無源補償方法結(jié)合,使磁芯達到“零磁通”狀態(tài),從而使得測量誤差最小。為驗證該補償方案的正確性,基于Simulink建立了帶有零磁通補償?shù)奈㈦娏鱾鞲衅髂P?并與傳統(tǒng)電流傳感器的模型進行對比性仿真實驗。仿真結(jié)果表明帶有零磁通補償?shù)奈㈦娏鱾鞲衅鬏^傳統(tǒng)的電流傳感器誤差有所減小,提高了測量精度,證明了該補償模型的正確性。設(shè)計了有源補償?shù)挠布娐芬约靶盘柼幚黼娐。其中補償電路實現(xiàn)的功能是將感應(yīng)電壓處理變換成補償電流送入二次側(cè)繞組,對輸出電流進行相位幅值的補償。信號處理電路主要對二次側(cè)輸出的微弱信號進行調(diào)理,方便后續(xù)處理及檢測。以LabVIEW為軟件平臺設(shè)計了微電流傳感器的誤差測量程序,該程序可以實現(xiàn)數(shù)據(jù)采集、數(shù)字濾波、波形顯示、比差及角差測量的功能。經(jīng)實驗室測試,該程序運行穩(wěn)定、可靠、交互性強、顯示內(nèi)容豐富。在實驗室環(huán)境下搭建測試平臺,對微電流傳感器的硬件、軟件各個部分進行測試。通過對微電流傳感器的誤差測量結(jié)果表明,設(shè)計的微電流傳感器可以測量μA~mA級的工頻電流,增設(shè)的補償電路可以有效的減小測量誤差,提高測量準(zhǔn)確度。整體運行穩(wěn)定,各項指標(biāo)達到設(shè)計要求。
[Abstract]:On-line insulation monitoring of high-voltage power equipment is an important technical means to ensure the safe operation of power system. High-precision micro-current sensor is an indispensable tool to realize on-line monitoring of power system insulation, which involves electrical protection, electric energy measurement, electrical control and other related fields, which is responsible for the task of collecting signals. Is an important part of the whole online monitoring system. The measuring accuracy and reliability of the current sensor are directly related to the safe operation of the power system. The current sensor used in the measurement is generally installed in the field of high voltage switch, and is vulnerable to the interference of the strong electromagnetic field. In the insulation on-line monitoring of power line or equipment, the order of magnitude of leakage current to be measured is in the microampere level, the ordinary small current sensor is difficult to meet the demand. In conclusion, a kind of measuring accuracy is high. Good sensitivity. The micro-current sensor suitable for strong electromagnetic field environment is of great significance for on-line monitoring of insulation state of electrical equipment. Based on the principle of zero flux, a micro-current sensor with accuracy of 0.2 grade has been developed in this paper. The main contents of the study are as follows:. First. Based on the principle of electromagnetic induction, the equivalent circuit diagram of electromagnetic current sensor is established and the error formula is deduced. According to the error formula, the structure parameters of magnetic core, the load impedance of secondary side and the turn number of secondary side winding are obtained. In order to further reduce the error, the inductive part of the current sensor is designed by analyzing the factors affecting the error in several aspects, such as magnetic core material and so on. Two methods of active compensation and passive compensation are introduced. On this basis, an integral compensation scheme based on the principle of zero flux is designed, which combines the compensation method of active electronic circuit with the third winding. The passive compensation method of parallel impedance is combined. In order to verify the correctness of the compensation scheme, a micro-current sensor model with zero flux compensation is established based on Simulink. The simulation results show that the error of the micro-current sensor with zero flux compensation is smaller than that of the traditional current sensor, and the measurement accuracy is improved. The correctness of the compensation model is proved. The hardware circuit and signal processing circuit of active compensation are designed. The function of the compensation circuit is to convert the inductive voltage into the compensation current into the secondary winding. The phase amplitude of the output current is compensated. The signal processing circuit mainly adjusts the weak signal output from the secondary side. Using LabVIEW as the software platform, the error measurement program of micro-current sensor is designed. The program can realize data acquisition, digital filtering and waveform display. Through the laboratory test, the program runs stably, reliably, interactively, and has rich display content. The test platform is built in the laboratory environment, and the hardware of the micro-current sensor is built. The error measurement results of the micro current sensor show that the designed micro current sensor can measure the power frequency current of 渭 AmA level. The additional compensation circuit can effectively reduce the measurement error and improve the accuracy of the measurement. The whole operation is stable and the indexes meet the design requirements.
【學(xué)位授予單位】:太原理工大學(xué)
【學(xué)位級別】:碩士
【學(xué)位授予年份】:2017
【分類號】:TP212;TM855
【參考文獻】
相關(guān)期刊論文 前10條
1 孫佳;漆隨平;王東明;;基于ICL7650的溫濕度傳感器設(shè)計[J];機械管理開發(fā);2015年01期
2 孫長海;金志明;李維江;鄭薇;李希元;;基于LabVIEW的低通數(shù)字濾波器設(shè)計[J];電氣自動化;2014年05期
3 謝特列;宋建成;吝伶艷;;基于LabVIEW的礦井主通風(fēng)機狀態(tài)監(jiān)測及故障診斷預(yù)警軟件系統(tǒng)設(shè)計[J];煤礦機電;2012年03期
4 姚陳果;王建;冉啟華;李成祥;米彥;;采用LED光纖傳感器的絕緣子串泄漏電流測量方法[J];高電壓技術(shù);2012年03期
5 周云艷;;弱信號放大電路的設(shè)計[J];山西電子技術(shù);2011年06期
6 陶楠;;新測量用電流互感器檢定規(guī)程[J];品牌與標(biāo)準(zhǔn)化;2011年Z1期
7 李彥哲;關(guān)恩明;張顯民;;巴特沃茲有源低通濾波器設(shè)計[J];黑龍江科技信息;2010年27期
8 苗立交;楊新華;;基于LabVIEW的相位差測量技術(shù)的研究與實現(xiàn)[J];電子測量技術(shù);2010年06期
9 馮曉婷;李杏華;樊玉銘;;基于LabVIEW及NI DAQmx的壓延機在線測厚系統(tǒng)[J];機床與液壓;2010年05期
10 任海東;尹文慶;胡飛;;基于LabVIEW的三種相位差測量法的對比分析[J];科學(xué)技術(shù)與工程;2010年01期
相關(guān)博士學(xué)位論文 前1條
1 翟學(xué)明;輸電線路絕緣子泄漏電流高精度檢測與數(shù)據(jù)壓縮技術(shù)的研究[D];華北電力大學(xué);2012年
相關(guān)碩士學(xué)位論文 前1條
1 安艷榮;微電流傳感器數(shù)據(jù)模型的分析和研究[D];華北電力大學(xué);2011年
,本文編號:1423670
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1423670.html