基于稀疏優(yōu)化的網(wǎng)格簡化問題研究
發(fā)布時間:2018-01-02 05:05
本文關(guān)鍵詞:基于稀疏優(yōu)化的網(wǎng)格簡化問題研究 出處:《中國科學技術(shù)大學》2017年碩士論文 論文類型:學位論文
更多相關(guān)文章: L_0范數(shù)最小 形狀逼近 網(wǎng)格簡化 稀疏優(yōu)化
【摘要】:簡化復(fù)雜的網(wǎng)格模型,減少模型的數(shù)據(jù)量,對于數(shù)字幾何處理技術(shù)的各個研究領(lǐng)域技術(shù)的發(fā)展以及推廣都有非常重要的意義,尤其是模型的實時渲染和傳輸。由于科技的發(fā)展,可視化技術(shù)的需求也是逐漸增強,對于網(wǎng)格模型的簡化逼近技術(shù)的需求也就變得更加的迫切。本文介紹一種網(wǎng)格逼近方法,使得輸入的模型可以由少量的多邊形平面網(wǎng)格來近似表示,在保持模型輪廓和特征的同時,大大減少模型的數(shù)據(jù)量。本文就三維網(wǎng)格簡化逼近工作出發(fā),介紹一種新的基于稀疏優(yōu)化的網(wǎng)格簡化逼近方法,使得三維幾何物體可以用平面多邊形網(wǎng)格來近似表示,得到一個由用戶指定的合理的面片數(shù)的多邊形平面網(wǎng)格來表示三維模型。本文提出的方法主要包含兩大方面:一方面是對輸入的模型進行法向優(yōu)化,進而根據(jù)優(yōu)化后的法向信息驅(qū)動頂點位置更新。也就是首先對輸入的三維網(wǎng)格的面片法向進行L0模最小的稀疏優(yōu)化,使得面片法向在一個區(qū)域內(nèi)是分片常值的,然后根據(jù)優(yōu)化后的面片法向信息通過網(wǎng)格變型的思想來更新頂點位置。另一方面是,對現(xiàn)有模型進行面片分割聚類,通過隨機選擇種子面片的方法,設(shè)定相鄰面片法向之間的差異的截斷值,迭代的進行分割聚類。最后根據(jù)聚類出來的分類,提出一個基于全局頂點的稀疏優(yōu)化模型,通過聚類邊界頂點梯度L0模最小對網(wǎng)格的聚類進行平面多邊形網(wǎng)格逼近。本文提出的優(yōu)化策略有廣泛的應(yīng)用前景,在幾何處理、3D渲染、數(shù)據(jù)存儲等行業(yè)中都有廣泛的需求。大量的網(wǎng)格簡化結(jié)果也證明了所提出的優(yōu)化模型與算法的有效性以及算法的穩(wěn)定性。多分辨率網(wǎng)格技術(shù)以及實時渲染技術(shù)的不斷發(fā)展和壯大,這都要歸功于網(wǎng)格簡化逼近技術(shù)的不斷完善和創(chuàng)新。隨著圖形技術(shù)的需求不斷加強,拓展更加優(yōu)秀的網(wǎng)格簡化方法依然是科研工作者們重要的研究課題。
[Abstract]:Simplifying the complex grid model and reducing the data volume of the model are of great significance for the development and promotion of various research fields of digital geometric processing technology. Especially the real-time rendering and transmission of the model. With the development of science and technology, the demand of visualization technology is gradually enhanced. The need for simplified approximation of grid model becomes more and more urgent. In this paper, a mesh approximation method is introduced, so that the input model can be approximately represented by a small number of polygonal planar meshes. While preserving the contour and features of the model, the data volume of the model is greatly reduced. In this paper, a new mesh simplification approximation method based on sparse optimization is introduced. The 3D geometric objects can be approximately represented by planar polygonal meshes. A polygonal planar mesh with reasonable number of surfaces specified by the user is obtained to represent the 3D model. The method proposed in this paper mainly includes two aspects: on the one hand, the input model is normally optimized. Then the vertex position is updated according to the optimized normal information. That is to say, the minimum sparse optimization of L0 norm is carried out for the input 3D mesh in the normal direction. So that the normal face in a region is a slice constant, and then according to the optimized face normal information to update the vertex position through the idea of grid modification. On the other hand, the existing models are segmented and clustered. Through the random selection of seed slices, the truncation value of the normal differences between adjacent patches is set, and then the segmentation and clustering are carried out iteratively. Finally, the classification is based on the clustering. A sparse optimization model based on global vertices is proposed, which approximates the mesh clustering by the minimum L0 norm of the edge vertex gradient. The optimization strategy presented in this paper has a wide application prospect. 3D rendering in geometric processing. Data storage and other industries have a wide range of requirements. A large number of mesh simplification results also prove the effectiveness of the proposed optimization model and algorithm and the stability of the algorithm. Multi-resolution grid technology and real-time rendering technology. Continue to grow and grow. This is due to the continuous improvement and innovation of mesh simplification and approximation technology. With the increasing demand for graphic technology, it is still an important research topic for researchers to expand more excellent mesh simplification methods.
【學位授予單位】:中國科學技術(shù)大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:TP391.41
【參考文獻】
相關(guān)期刊論文 前9條
1 陳西江;章光;花向紅;;于法向量夾角信息熵的點云簡化算法[J];中國激光;2015年08期
2 周元峰;張彩明;賀平;;體積平方度量下的特征保持網(wǎng)格簡化方法[J];計算機學報;2009年02期
3 谷冬冬;潘正運;;漸進網(wǎng)格簡化模型的改進算法[J];計算機工程與設(shè)計;2008年18期
4 劉曉利,劉則毅,高鵬東,彭翔;基于尖特征度的邊折疊簡化算法[J];軟件學報;2005年05期
5 曹衛(wèi)群,鮑虎軍,彭群生;基于高斯球的近似共面合并層次細節(jié)模型[J];軟件學報;2000年12期
6 費廣正,吳恩華;基于遞進網(wǎng)格的多層次模型編輯[J];計算機學報;2000年09期
7 周昆,潘志庚,石教英;基于三角形折疊的網(wǎng)格簡化算法[J];計算機學報;1998年06期
8 馬小虎,潘志庚,石教英;基于三角形移去準則的多面體模型簡化方法[J];計算機學報;1998年06期
9 潘志庚,,馬小虎,石教英;虛擬環(huán)境中多細節(jié)層次模型自動生成算法[J];軟件學報;1996年09期
本文編號:1367771
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1367771.html
最近更新
教材專著