含能材料3D打印實(shí)驗(yàn)系統(tǒng)總體設(shè)計(jì)及工藝參數(shù)影響分析
本文關(guān)鍵詞:含能材料3D打印實(shí)驗(yàn)系統(tǒng)總體設(shè)計(jì)及工藝參數(shù)影響分析 出處:《南京理工大學(xué)》2017年碩士論文 論文類(lèi)型:學(xué)位論文
更多相關(guān)文章: 3D打印技術(shù) 含能材料 熔融沉積成型 正交實(shí)驗(yàn) 熵權(quán)TOPSIS模型
【摘要】:本文針對(duì)含能材料3D打印技術(shù),以溶塑型含能材料為成型材料,對(duì)含能材料3D打印實(shí)驗(yàn)系統(tǒng)進(jìn)行總體設(shè)計(jì)和系統(tǒng)搭建,并著重就工藝參數(shù)對(duì)成型精度的影響進(jìn)行了實(shí)驗(yàn)研究。論文主要工作及結(jié)論如下:(1)以熔融沉積成型技術(shù)為基礎(chǔ),結(jié)合溶塑型含能材料成型特點(diǎn),對(duì)含能材料3D打印實(shí)驗(yàn)系統(tǒng)進(jìn)行了總體設(shè)計(jì),并依據(jù)此完成對(duì)實(shí)驗(yàn)系統(tǒng)的搭建與調(diào)試,為后續(xù)成型實(shí)驗(yàn)的開(kāi)展提供了實(shí)驗(yàn)平臺(tái);(2)基于傳熱學(xué)和熱力學(xué)基本理論,利用ANSYS有限元分析軟件,結(jié)合生死單元技術(shù)和ANSYS參數(shù)化設(shè)計(jì)語(yǔ)言,分別對(duì)噴頭及成型過(guò)程的溫度場(chǎng)分布進(jìn)行了仿真研究。結(jié)果發(fā)現(xiàn),噴頭和成型過(guò)程整體溫度分布均在安全溫度范圍內(nèi),成型過(guò)程安全,為工藝參數(shù)影響實(shí)驗(yàn)的安全進(jìn)行提供了依據(jù);(3)基于正交實(shí)驗(yàn)設(shè)計(jì)法,就填充速度、擠出速度、分層厚度以及填充方式對(duì)制件尺寸精度及密實(shí)度的影響規(guī)律進(jìn)行了實(shí)驗(yàn)研究,并利用極差分析法對(duì)實(shí)驗(yàn)結(jié)果進(jìn)行了單目標(biāo)分析,得出了各工藝參數(shù)對(duì)單個(gè)優(yōu)化目標(biāo)的影響主次關(guān)系;(4)基于熵權(quán)TOPSIS模型,對(duì)正交實(shí)驗(yàn)結(jié)果進(jìn)行多目標(biāo)綜合優(yōu)化分析,并得出了最優(yōu)工藝參數(shù)組合方案。經(jīng)驗(yàn)證實(shí)驗(yàn)發(fā)現(xiàn),在綜合工藝目標(biāo)上,優(yōu)選出的最優(yōu)方案較正交實(shí)驗(yàn)中最優(yōu)方案提升了2.72%,驗(yàn)證了熵權(quán)TOSIS模型在含能材料3D打印工藝參數(shù)優(yōu)化中應(yīng)用的可行性;(5)依據(jù)優(yōu)選出的工藝參數(shù)組合方案,以溶塑型含能材料真料為成型材料,完成對(duì)條狀、單孔及星孔藥柱的3D打印成型,驗(yàn)證了含能材料3D打印的可行性。
[Abstract]:According to the energetic material 3D printing technology, the solution model of energetic materials as raw materials, the experimental system of energetic material 3D printing design and system construction, and focus on the influence of process parameters on forming accuracy was studied. The main work and conclusions are as follows: (1) in fused deposition modeling technology as the foundation, combined with the solution model of energetic materials forming characteristics of the experimental system, 3D printing materials for the design, and on the basis of the completion of the building and debugging of the experimental system, provides experimental platform for further molding experiments; (2) the basic theory of heat transfer and thermodynamics based on the use of ANSYS Co. element analysis software, combined with the life and death element technology and ANSYS parametric design language, respectively. The temperature field distribution of nozzle and molding process are simulated. The results show that the nozzle and the forming process of the temperature distribution In a safe temperature range, the forming process of safety, process parameters affect the security provided a basis; (3) orthogonal experimental design method based on filling speed, extrusion speed, layer thickness and filling mode of experiment study of the influence of the size accuracy and compactness of the law, and the experimental results are the single objective analysis by using range analysis method, obtained the influence of process parameters on the relationship between primary and secondary single objective optimization; (4) entropy TOPSIS model based on the analysis of multi objective optimization of the orthogonal experiment, and the optimum process parameters were obtained. The combination scheme of the experiments showed that in the comprehensive process target, optimal the optimized scheme is orthogonal experiment optimum scheme improved 2.72%, verified the entropy TOSIS model in the application feasibility of the optimization of the process parameters of energetic materials 3D printing; (5) according to the selected. The parameters combination scheme, the dissolving of energetic materials is really material plastic molding materials, the completion of the strip, 3D print single hole Jixing grain, verified the feasibility of energetic material 3D printing.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類(lèi)號(hào)】:TQ560.1;TP391.73
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 ;《含能材料》征稿啟事[J];含能材料;2007年01期
2 ;《含能材料》征稿啟事[J];含能材料;2007年02期
3 ;《含能材料》征稿啟事[J];含能材料;2007年05期
4 ;《含能材料》征稿啟事[J];含能材料;2008年02期
5 ;《含能材料》編輯部開(kāi)通遠(yuǎn)程稿件處理系統(tǒng)[J];含能材料;2009年01期
6 ;《含能材料》編輯部開(kāi)通遠(yuǎn)程稿件處理系統(tǒng)[J];含能材料;2009年03期
7 ;《含能材料》編輯部開(kāi)通遠(yuǎn)程稿件處理系統(tǒng)[J];含能材料;2009年04期
8 ;《含能材料》編輯部開(kāi)通遠(yuǎn)程稿件處理系統(tǒng)[J];含能材料;2009年05期
9 ;歡迎訂閱《含能材料》[J];含能材料;2009年05期
10 ;歡迎訂閱含能材料[J];含能材料;2010年01期
相關(guān)會(huì)議論文 前10條
1 舒遠(yuǎn)杰;;含能材料的理論研究與數(shù)值模擬進(jìn)展[A];中國(guó)工程物理研究院科技年報(bào)(2009年版)[C];2010年
2 王曉川;;聚合物與含能材料相容性[A];2006年全國(guó)高分子材料科學(xué)與工程研討會(huì)論文集[C];2006年
3 葛忠學(xué);王伯周;吳浩;李華;;含能材料分子設(shè)計(jì)與性能預(yù)估研究[A];第九屆全國(guó)計(jì)算(機(jī))化學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2007年
4 劉艷;劉子如;;粒度對(duì)含能材料粉體熱分解中局部化學(xué)現(xiàn)象的影響[A];第八屆全國(guó)顆粒制備與處理學(xué)術(shù)和應(yīng)用研討會(huì)論文集[C];2007年
5 馮梅;;含能材料生產(chǎn)線安全控制技術(shù)[A];全國(guó)危險(xiǎn)物質(zhì)與安全應(yīng)急技術(shù)研討會(huì)論文集(下)[C];2011年
6 王新征;張松林;張慶明;陳e,
本文編號(hào):1356098
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1356098.html