康復(fù)運(yùn)載型下肢外骨骼的步態(tài)規(guī)劃與軌跡跟蹤控制研究
本文關(guān)鍵詞:康復(fù)運(yùn)載型下肢外骨骼的步態(tài)規(guī)劃與軌跡跟蹤控制研究 出處:《南京理工大學(xué)》2017年碩士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 下肢外骨骼 混雜系統(tǒng) 數(shù)學(xué)模型 虛擬樣機(jī) 步態(tài)規(guī)劃 TDE-iPID TDE-iPIDESMC MATLAB與ADAMS聯(lián)合仿真
【摘要】:可穿戴式外骨骼將機(jī)器人提供的強(qiáng)大機(jī)械能量與人的智能相結(jié)合,是一種新型機(jī)電一體化裝置,能夠提供身體支撐、運(yùn)動(dòng)輔助、機(jī)能增強(qiáng)等功能。在當(dāng)今人口老齡化趨勢(shì)日益嚴(yán)重、單兵作戰(zhàn)能力亟待提高的形勢(shì)下,外骨骼已經(jīng)成為機(jī)器人領(lǐng)域的研究熱點(diǎn),并可以應(yīng)用到眾多領(lǐng)域。本文以康復(fù)運(yùn)載型下肢外骨骼系統(tǒng)為對(duì)象開展設(shè)計(jì)研究。在人體下肢生理結(jié)構(gòu)與步行分析的基礎(chǔ)上,文中給出了具有10自由度的系統(tǒng)結(jié)構(gòu)設(shè)計(jì),根據(jù)康復(fù)運(yùn)載這一側(cè)重點(diǎn)進(jìn)行了穩(wěn)定步態(tài)規(guī)劃與軌跡跟蹤控制研究。主要研究工作如下:1)下肢外骨骼系統(tǒng)結(jié)構(gòu)設(shè)計(jì)。歸類總結(jié)分析現(xiàn)有研究成果,根據(jù)人體步行特性確定系統(tǒng)功能實(shí)現(xiàn)所需的自由度數(shù)目及其配置,完成系統(tǒng)的結(jié)構(gòu)設(shè)計(jì)。2)支撐腿與擺動(dòng)腿運(yùn)動(dòng)學(xué)、動(dòng)力學(xué)模型的建立。由步行分析得出下肢外骨骼的混雜系統(tǒng)特性,從而分別對(duì)支撐腿和擺動(dòng)腿進(jìn)行運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)分析。運(yùn)動(dòng)學(xué)分析中采用改進(jìn)的D-H方法,包含了正、逆運(yùn)動(dòng)學(xué)的求解驗(yàn)證。在此基礎(chǔ)上,通過拉格朗日方程法得出了動(dòng)力學(xué)模型。結(jié)合切換系統(tǒng)描述的離散事件動(dòng)態(tài)特性,建立完整的外骨骼系統(tǒng)混雜模型。為模擬真實(shí)環(huán)境并簡(jiǎn)化混雜系統(tǒng)數(shù)學(xué)模型的構(gòu)建以及后續(xù)控制器的設(shè)計(jì),采用動(dòng)力學(xué)仿真軟件ADAMS建立了下肢外骨骼系統(tǒng)的虛擬樣機(jī)。3)穩(wěn)定步態(tài)的規(guī)劃。運(yùn)載型這一功能特點(diǎn)表明外骨骼占據(jù)主導(dǎo)地位并帶動(dòng)穿戴者實(shí)現(xiàn)正常步行,使得穩(wěn)定步態(tài)規(guī)劃成為重要研究?jī)?nèi)容。對(duì)系統(tǒng)步行穩(wěn)定的分析采用的是零力矩點(diǎn)(ZMP)理論,即穩(wěn)定步行需保證ZMP始終位于支撐域內(nèi)。根據(jù)人體步行周期的分析,確定了步態(tài)規(guī)劃的關(guān)鍵時(shí)刻約束條件,通過三次樣條插值獲得參數(shù)化的連續(xù)軌跡。結(jié)合穩(wěn)定裕度計(jì)算,設(shè)計(jì)了遺傳算法優(yōu)化步態(tài)參數(shù)所需的目標(biāo)函數(shù)。獲得的穩(wěn)定連續(xù)步態(tài)經(jīng)逆運(yùn)動(dòng)學(xué)可得出預(yù)期關(guān)節(jié)軌跡,并通過ADAMS動(dòng)力學(xué)仿真驗(yàn)證其穩(wěn)定性。4)軌跡跟蹤控制的研究。穩(wěn)定步行的最終實(shí)現(xiàn)需要各關(guān)節(jié)自由度對(duì)預(yù)期軌跡進(jìn)行精確跟蹤。基于動(dòng)力學(xué)分析所得系統(tǒng)模型的數(shù)學(xué)描述設(shè)計(jì)了計(jì)算力矩加PD反饋控制器,針對(duì)無法獲得精確數(shù)學(xué)表達(dá)的虛擬樣機(jī)被控對(duì)象設(shè)計(jì)了無模型思想的TDE-iPID與TDE-iPIDESMC控制器。TDE-iPID采用時(shí)延估計(jì)來獲得系統(tǒng)的極局部模型,通過iPID反饋形成控制回路。在TDE-iPID基礎(chǔ)上建立時(shí)延估計(jì)誤差模型,利用等效滑?刂(ESMC)進(jìn)行估計(jì)誤差補(bǔ)償。通過MATLAB/Simulink與ADAMS的聯(lián)合仿真分析驗(yàn)證了 TDE-iPID軌跡跟蹤控制策略的合理有效性,以及ESMC對(duì)跟蹤結(jié)果的改善。
[Abstract]:Wearable exoskeleton, which combines powerful mechanical energy and human intelligence, is a new electromechanical integration device, which can provide body support, motion assistance, function enhancement and other functions. Exoskeleton has become a research hotspot in the field of robotics, and it can be applied to many fields when the trend of population aging is becoming more and more serious. In this paper, a study was conducted on the rehabilitation of the exoskeleton system of the lower extremities. Based on the analysis of the physiological structure and walking of human lower limbs, a system structure design with 10 degrees of freedom is given. Based on the emphasis of rehabilitation, the stable gait planning and trajectory tracking control are studied. The main research work is as follows: 1) the structure design of the exoskeleton system of the lower extremities. The existing research results are classified, analyzed, and the functions of the system are determined according to the walking characteristics of the human body to achieve the required degrees of freedom and their configuration, and the structural design of the system is completed. 2) the establishment of the kinematics and dynamics model of the supporting leg and the swinging leg. The characteristics of the hybrid system of the exoskeleton of the lower extremities were obtained by walking analysis, and the kinematic and dynamic analysis of the support leg and the swinging leg were carried out respectively. The improved D-H method is used in the kinematic analysis, which includes the validation of the positive and inverse kinematics. On this basis, the dynamic model is obtained by the Lagrange equation method. Combined with the dynamic characteristics of discrete events described by the switching system, a complete hybrid model of the exoskeleton system is established. In order to simulate the real environment and simplify the construction of the mathematical model of hybrid system and the design of subsequent controller, a virtual prototype of the exoskeleton system of lower extremities was established by using the dynamic simulation software ADAMS. 3) the planning of stable gait. The features of the carrier type show that the exoskeleton occupies the dominant position and drives the wearer to walk normally, making the stable gait planning an important research content. The analysis of the stability of the system adopts the zero moment point (ZMP) theory, that is, the stable walking needs to ensure that the ZMP is always in the supporting domain. According to the analysis of human walking cycle, the key constraint conditions of gait planning are determined, and the parameterized continuous trajectories are obtained by three spline interpolation. Combined with the calculation of stability margin, the objective function required by genetic algorithm to optimize gait parameters is designed. The desired joint trajectory can be obtained by the inverse kinematics of the stable continuous gait, and the stability is verified by ADAMS dynamic simulation. 4) the research of trajectory tracking control. The final realization of stable walking requires the accuracy of the degree of freedom of each joint to track the expected trajectory accurately. Based on the mathematical description of the system model based on the dynamic analysis, the computed torque plus PD feedback controller is designed. The TDE-iPID and TDE-iPIDESMC controller without model thinking is designed for the object controlled by the virtual prototype which can not get the exact mathematical expression. TDE-iPID uses the time delay estimation to obtain the extremely local model of the system, and forms the control loop through the feedback of iPID. The time delay estimation error model is established on the basis of TDE-iPID, and the estimation error compensation is made by using the equivalent sliding mode control (ESMC). The joint simulation analysis of MATLAB/Simulink and ADAMS validates the rationality and effectiveness of the TDE-iPID trajectory tracking control strategy and the improvement of the tracking results by ESMC.
【學(xué)位授予單位】:南京理工大學(xué)
【學(xué)位級(jí)別】:碩士
【學(xué)位授予年份】:2017
【分類號(hào)】:TP242
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 孫敏;范守文;;基于能耗指標(biāo)的擬人機(jī)器人步態(tài)優(yōu)化與分析[J];機(jī)械設(shè)計(jì)與研究;2007年02期
2 李飛;謝華龍;徐心和;;異構(gòu)雙腿機(jī)器人步態(tài)規(guī)劃與控制實(shí)現(xiàn)[J];東北大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年08期
3 崔寶洲;宗光華;孫明磊;張融;劉錦華;;一種獨(dú)立輪腿式機(jī)器人的步態(tài)規(guī)劃研究[J];機(jī)械與電子;2009年02期
4 王企遠(yuǎn);錢晉武;馮治國(guó);沈林勇;章亞男;;下肢步態(tài)矯形器的生理學(xué)步態(tài)規(guī)劃與試驗(yàn)[J];中國(guó)機(jī)械工程;2009年08期
5 張君;李聲晉;盧剛;閆偉亮;;液壓作動(dòng)的四足機(jī)器人步態(tài)規(guī)劃及運(yùn)動(dòng)分析[J];機(jī)械設(shè)計(jì);2009年04期
6 曹恒;凌正陽(yáng);王瑜;龍勇波;朱鈞;;一種仿真數(shù)字人步態(tài)規(guī)劃優(yōu)化算法[J];振動(dòng)、測(cè)試與診斷;2009年04期
7 王瑜;曹恒;凌正陽(yáng);朱鈞;龍勇波;;基于人機(jī)系統(tǒng)運(yùn)動(dòng)仿真的數(shù)字人步態(tài)規(guī)劃方法[J];華東理工大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
8 張文宇;張磊;;基于靜態(tài)平衡的四足機(jī)器人斜面步態(tài)規(guī)劃[J];微計(jì)算機(jī)信息;2012年01期
9 任昭霖;章亞男;沈林勇;鐘翠華;;基于髖關(guān)節(jié)高度恒定的靜態(tài)步態(tài)規(guī)劃[J];機(jī)械設(shè)計(jì)與制造;2012年10期
10 湯中華;劉莉;陳懇;;類人機(jī)器人耦合步態(tài)規(guī)劃與實(shí)驗(yàn)研究[J];機(jī)械設(shè)計(jì)與制造;2013年01期
相關(guān)會(huì)議論文 前3條
1 傅莉;謝華龍;徐心和;;異構(gòu)雙腿行走機(jī)器人步態(tài)規(guī)劃與仿真[A];2007中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];2007年
2 朱美強(qiáng);王軍;李明;王珂;傅瑞卿;;基于自然動(dòng)力法的類人機(jī)器人步態(tài)規(guī)劃研究[A];第十八屆全國(guó)煤礦自動(dòng)化學(xué)術(shù)年會(huì)中國(guó)煤炭學(xué)會(huì)自動(dòng)化專業(yè)委員會(huì)學(xué)術(shù)會(huì)議論文集[C];2008年
3 梁志偉;朱松豪;金欣;;基于加強(qiáng)學(xué)習(xí)的類人機(jī)器人步行參數(shù)設(shè)計(jì)[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)B卷[C];2011年
相關(guān)博士學(xué)位論文 前3條
1 王立鵬;液壓四足機(jī)器人驅(qū)動(dòng)控制與步態(tài)規(guī)劃研究[D];北京理工大學(xué);2014年
2 王企遠(yuǎn);步行康復(fù)訓(xùn)練機(jī)器人助行腿的步態(tài)規(guī)劃與運(yùn)動(dòng)控制[D];上海大學(xué);2011年
3 盛沙;小型四足平臺(tái)的機(jī)構(gòu)設(shè)計(jì)與行走控制研究[D];北京理工大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 馮曉凱;小型仿人機(jī)器人步態(tài)規(guī)劃算法研究與實(shí)現(xiàn)[D];中國(guó)海洋大學(xué);2015年
2 王慧瑩;基于中樞模式發(fā)生器的異構(gòu)雙腿行走機(jī)器人人工腿步態(tài)規(guī)劃研究[D];東北大學(xué);2014年
3 張洪賓;雙足步行機(jī)器人的步態(tài)規(guī)劃與神經(jīng)網(wǎng)絡(luò)控制[D];華南理工大學(xué);2016年
4 趙宏亮;下肢外骨骼機(jī)器人步態(tài)規(guī)劃和步行控制的研究[D];華南理工大學(xué);2016年
5 李永;窄足3D半被動(dòng)行走器步態(tài)穩(wěn)定性與研究[D];重慶郵電大學(xué);2016年
6 任杰;基于CPG的六足仿生機(jī)器人步態(tài)規(guī)劃研究[D];中國(guó)計(jì)量大學(xué);2016年
7 徐海東;四足機(jī)器人運(yùn)動(dòng)步態(tài)及CPG調(diào)節(jié)研究[D];中國(guó)計(jì)量大學(xué);2016年
8 王錫坤;康復(fù)運(yùn)載型下肢外骨骼的步態(tài)規(guī)劃與軌跡跟蹤控制研究[D];南京理工大學(xué);2017年
9 馬騁;擬人機(jī)器人的穩(wěn)定性分析和步態(tài)規(guī)劃[D];哈爾濱工業(yè)大學(xué);2006年
10 毛明艷;教學(xué)用六足機(jī)器甲蟲步態(tài)研究[D];華中科技大學(xué);2011年
,本文編號(hào):1344208
本文鏈接:http://sikaile.net/shoufeilunwen/xixikjs/1344208.html