稻蟹共生系統(tǒng)對生產(chǎn)力,土壤肥力和環(huán)境的影響研究
發(fā)布時間:2022-01-23 07:54
水稻(Oryza sativa L.)是30億人口的主要糧食作物,稻田是溫室氣體(GHG)排放和環(huán)境氮素損失的重要來源。稻漁共生系統(tǒng)可以提高農(nóng)業(yè)生產(chǎn)力,提高現(xiàn)有資源的利用率,但對水、土壤質量以及溫室氣體排放的作用還尚不明確。本研究的目的主要是(i)明確稻蟹共生(RC)系統(tǒng)對提高田間生產(chǎn)力,增加養(yǎng)分吸收和農(nóng)場收入方面的作用,(ii)探究土壤養(yǎng)分動態(tài)變化以及水稻中的養(yǎng)分組成特征,(iii)明確其減少溫室氣體排放和緩解全球變暖潛力的能力。假設RC系統(tǒng)可以提高稻米的生產(chǎn)率,改善土壤肥力并具有環(huán)境可持續(xù)性。因此,本研究在盤錦市進行了實地調查,包括水稻單作(RM)和稻蟹共生(RC)2個生態(tài)系統(tǒng)。此外,還對不同螃蟹投放密度和飼料投入管理進行了田間試驗,試驗處理包括:水稻單作處理(RM);投放螃蟹3000只ha-1但無飼料投入處理(RC3000);投放螃蟹6000只ha-1并投入飼料處理(RC6000)和投放螃蟹12000只ha-1并翻倍飼料投入處理(RC12000)。研究結果表明,稻蟹共生系統(tǒng)可以改善農(nóng)田生產(chǎn)力并提高經(jīng)濟效益。在實地調...
【文章來源】:中國農(nóng)業(yè)科學院北京市
【文章頁數(shù)】:129 頁
【學位級別】:博士
【文章目錄】:
附件
中文摘要
Abstract
Abbreviations
CHAPTER 1 Introduction
1.1 Rice-animal co-culture as a need
1.2 Worldwide adoption of rice-animal co-culture
1.3 Environmental factors influencing rice-animal co-culture
1.4 Ecological benefits of rice-animal co-culture
1.5 Greenhouse gas emissions
1.6 Economic benefits of the co-culture system
1.7 Social benefits of the co-culture system
1.8 Constraints and future aspects
CHAPTER 2 Rice-crab co-culture system provides new insights for sustainable agricultural production
2.1 Introduction
2.2 Materials and Methods
2.2.1 Study site and rice-crab system
2.2.2 Field Survey
2.2.3 Field experiment
2.3 Results
2.3.1 Field survey
2.3.2 Field Experiment
2.4 Discussion
CHAPTER 3 Apparent variations in soil nutrient dynamics and their composition in rice under integrated rice-crab co-culture system
3.1 Introduction
3.2 Materials and Methods
3.2.1 Study site description
3.2.2 Field survey
3.2.3 Experimental design
3.2.4 Sample collection
3.2.5 Sample analysis
3.2.6 Translocation of nutrients
3.2.7 Statistical analysis
3.3 Results
3.3.1 Effect of rice-crab co-culture system on nutrient dynamics in soil
3.3.2 Effect of rice-crab co-culture system on the nutrient composition of rice
3.3.3 Translocation of nutrients to grains
3.4 Discussion
CHAPTER 4 Integrated rice-crab co-culture system reduces ammonia volatilization and global warming potential
4.1 Introduction
4.2 Materials and Methods
4.2.1 Study site description
4.2.2 Field survey
4.2.3 Experimental design
4.2.4 Measurement of field water nutrients concentrations
4.2.5 Measurement of field water quality
4.2.6 Measurement of gases emission
4.2.7 Estimation of global warming impact(GWI)
4.2.8 Statistical analysis
4.3 Results
4.3.1 Role of rice-crab co-culture system to influence field water nutrients
4.3.2 Role of rice-crab co-culture system to influence field water nutrients
4.3.3 Effect of rice-crab co-culture system on field water quality
4.3.4 Gases emission
4.3.5 Total/cumulative emission
4.3.6 Global warming impact
4.3.7 Correlation of field water nutrients,water quality and gaseous emission
4.4 Discussion
4.4.1 Rice-crab co-culture system and field water nutrients
4.4.2 Rice-crab co-culture system and field water quality
4.4.3 Rice-crab co-culture system and Gaseous emission
4.4.4 Rice-crab co-culture system and GWI
CHAPTER 5 General Discussion
ACKNOWLEDGEMENTS
REFERENCES
Author Biography
【參考文獻】:
期刊論文
[1]Research Progress of Rice-Fish Integrated Farming[J]. Shunlong MENG,Gengdong HU,DANDan LI,Liping QIU,Chao SONG,Limin FAN,Yao ZHENG,Wei WU,Jiazhang CHEN,Xuwen BING. Agricultural Biotechnology. 2018(04)
[2]稻蝦共作模式的“雙刃性”及可持續(xù)發(fā)展策略[J]. 曹湊貴,江洋,汪金平,袁鵬麗,陳松文. 中國生態(tài)農(nóng)業(yè)學報. 2017(09)
[3]Food web structure and trophic levels in polyculture ricecrab fields[J]. 郭凱,趙文,李文寬,趙苑淞,張鵬,張晨. Chinese Journal of Oceanology and Limnology. 2015(03)
[4]不同水稻種植模式對氮磷流失特征的影響[J]. 岳玉波,沙之敏,趙崢,陸欣欣,張金秀,趙琦,曹林奎. 中國生態(tài)農(nóng)業(yè)學報. 2014(12)
[5]Standards of Ecological Compensation for Traditional Ecoagriculture:Taking Rice-Fish System in Hani Terrace as an Example[J]. LIU Mou-cheng,XIONG Yin,YUAN Zheng,MIN Qing-wen,SUN Ye-hong,Anthony M.Fuller. Journal of Mountain Science. 2014(04)
[6]稻蟹共生系統(tǒng)水稻栽培模式對水稻和河蟹的影響[J]. 徐敏,馬旭洲,王武. 中國農(nóng)業(yè)科學. 2014(09)
[7]稻蟹共作對稻田水體底棲動物多樣性的影響[J]. 李巖,王武,馬旭洲,張云杰. 中國生態(tài)農(nóng)業(yè)學報. 2013(07)
[8]傳統(tǒng)稻魚系統(tǒng)生產(chǎn)力提升對稻田水體環(huán)境的影響[J]. 丁偉華,李娜娜,任偉征,胡亮亮,陳欣,唐建軍. 中國生態(tài)農(nóng)業(yè)學報. 2013(03)
[9]不同稻蟹生產(chǎn)模式對土壤活性有機碳和酶活性的影響[J]. 安輝,劉鳴達,王耀晶,閆穎. 生態(tài)學報. 2012(15)
[10]不同稻蟹模式對土壤團聚體腐殖質特征的影響[J]. 劉鳴達,郝旭東,安輝,閆穎,王耀晶. 沈陽農(nóng)業(yè)大學學報. 2012(03)
本文編號:3603917
【文章來源】:中國農(nóng)業(yè)科學院北京市
【文章頁數(shù)】:129 頁
【學位級別】:博士
【文章目錄】:
附件
中文摘要
Abstract
Abbreviations
CHAPTER 1 Introduction
1.1 Rice-animal co-culture as a need
1.2 Worldwide adoption of rice-animal co-culture
1.3 Environmental factors influencing rice-animal co-culture
1.4 Ecological benefits of rice-animal co-culture
1.5 Greenhouse gas emissions
1.6 Economic benefits of the co-culture system
1.7 Social benefits of the co-culture system
1.8 Constraints and future aspects
CHAPTER 2 Rice-crab co-culture system provides new insights for sustainable agricultural production
2.1 Introduction
2.2 Materials and Methods
2.2.1 Study site and rice-crab system
2.2.2 Field Survey
2.2.3 Field experiment
2.3 Results
2.3.1 Field survey
2.3.2 Field Experiment
2.4 Discussion
CHAPTER 3 Apparent variations in soil nutrient dynamics and their composition in rice under integrated rice-crab co-culture system
3.1 Introduction
3.2 Materials and Methods
3.2.1 Study site description
3.2.2 Field survey
3.2.3 Experimental design
3.2.4 Sample collection
3.2.5 Sample analysis
3.2.6 Translocation of nutrients
3.2.7 Statistical analysis
3.3 Results
3.3.1 Effect of rice-crab co-culture system on nutrient dynamics in soil
3.3.2 Effect of rice-crab co-culture system on the nutrient composition of rice
3.3.3 Translocation of nutrients to grains
3.4 Discussion
CHAPTER 4 Integrated rice-crab co-culture system reduces ammonia volatilization and global warming potential
4.1 Introduction
4.2 Materials and Methods
4.2.1 Study site description
4.2.2 Field survey
4.2.3 Experimental design
4.2.4 Measurement of field water nutrients concentrations
4.2.5 Measurement of field water quality
4.2.6 Measurement of gases emission
4.2.7 Estimation of global warming impact(GWI)
4.2.8 Statistical analysis
4.3 Results
4.3.1 Role of rice-crab co-culture system to influence field water nutrients
4.3.2 Role of rice-crab co-culture system to influence field water nutrients
4.3.3 Effect of rice-crab co-culture system on field water quality
4.3.4 Gases emission
4.3.5 Total/cumulative emission
4.3.6 Global warming impact
4.3.7 Correlation of field water nutrients,water quality and gaseous emission
4.4 Discussion
4.4.1 Rice-crab co-culture system and field water nutrients
4.4.2 Rice-crab co-culture system and field water quality
4.4.3 Rice-crab co-culture system and Gaseous emission
4.4.4 Rice-crab co-culture system and GWI
CHAPTER 5 General Discussion
ACKNOWLEDGEMENTS
REFERENCES
Author Biography
【參考文獻】:
期刊論文
[1]Research Progress of Rice-Fish Integrated Farming[J]. Shunlong MENG,Gengdong HU,DANDan LI,Liping QIU,Chao SONG,Limin FAN,Yao ZHENG,Wei WU,Jiazhang CHEN,Xuwen BING. Agricultural Biotechnology. 2018(04)
[2]稻蝦共作模式的“雙刃性”及可持續(xù)發(fā)展策略[J]. 曹湊貴,江洋,汪金平,袁鵬麗,陳松文. 中國生態(tài)農(nóng)業(yè)學報. 2017(09)
[3]Food web structure and trophic levels in polyculture ricecrab fields[J]. 郭凱,趙文,李文寬,趙苑淞,張鵬,張晨. Chinese Journal of Oceanology and Limnology. 2015(03)
[4]不同水稻種植模式對氮磷流失特征的影響[J]. 岳玉波,沙之敏,趙崢,陸欣欣,張金秀,趙琦,曹林奎. 中國生態(tài)農(nóng)業(yè)學報. 2014(12)
[5]Standards of Ecological Compensation for Traditional Ecoagriculture:Taking Rice-Fish System in Hani Terrace as an Example[J]. LIU Mou-cheng,XIONG Yin,YUAN Zheng,MIN Qing-wen,SUN Ye-hong,Anthony M.Fuller. Journal of Mountain Science. 2014(04)
[6]稻蟹共生系統(tǒng)水稻栽培模式對水稻和河蟹的影響[J]. 徐敏,馬旭洲,王武. 中國農(nóng)業(yè)科學. 2014(09)
[7]稻蟹共作對稻田水體底棲動物多樣性的影響[J]. 李巖,王武,馬旭洲,張云杰. 中國生態(tài)農(nóng)業(yè)學報. 2013(07)
[8]傳統(tǒng)稻魚系統(tǒng)生產(chǎn)力提升對稻田水體環(huán)境的影響[J]. 丁偉華,李娜娜,任偉征,胡亮亮,陳欣,唐建軍. 中國生態(tài)農(nóng)業(yè)學報. 2013(03)
[9]不同稻蟹生產(chǎn)模式對土壤活性有機碳和酶活性的影響[J]. 安輝,劉鳴達,王耀晶,閆穎. 生態(tài)學報. 2012(15)
[10]不同稻蟹模式對土壤團聚體腐殖質特征的影響[J]. 劉鳴達,郝旭東,安輝,閆穎,王耀晶. 沈陽農(nóng)業(yè)大學學報. 2012(03)
本文編號:3603917
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/3603917.html
最近更新
教材專著