黃土塬區(qū)玉米大豆間作系統(tǒng)水分利用研究
[Abstract]:The issue of food security has been one of the main challenges and problems to be solved in the sustainable development of human society. The precipitation is small, the time-space distribution is not uniform, and the soil fertility is low, and the water use efficiency and the productivity of the crops are greatly limited. How to improve the water use efficiency becomes an important direction of agricultural research in the region. The corn-soybean intercropping can utilize the nitrogen fixation of the soybean to provide the nitrogen fertilizer for the corn, improve the yield and the water use efficiency, and simultaneously reduce the use amount of the fertilizer. Therefore, the corn-soybean intercropping has the potential to improve the water-deficient and fertilizer-free status of the crop region, so as to provide theoretical basis and practical guidance for crop cultivation in the region. In this study, field experiments were conducted to study different crop varieties (maize: Zhengdan 958 and Yuyu 22; soybean: medium yellow 24 and medium yellow 13), density gradient (low, medium and high), planting ratio (single cropping of corn, corn: soybean = 2:2; corn: soybean = 2:4; corn: The effects of soybean = 4:2; single-cropping soybean) on the growth and development, physiological characteristics, yield, economic benefit, nutrient and water utilization of maize-soybean, and provide the basis for the selection of reasonable planting methods of the crops and the sustainable development of agriculture. The main conclusions are as follows: (1) The land equivalent ratio of maize-soybean intercropping under different varieties, density and planting ratio is between 0.90 and 1.29. In addition to the 2:2 intercropping of the maize and the soybean in 2014, the land equivalent ratio of the other intercropping is greater than 1, indicating that the reasonable corn-soybean intercropping can improve the intercropping yield and the efficiency of the land use, and has the intercropping advantage. (2) The competition index (the occupation force and the competition ratio) of the corn were higher than that of the soybean, indicating that the corn-soybean intercropping system was the dominant species. The actual yield loss (AYL) in the intercropping system was positive, indicating that the yield of the maize in the intercropping system was increased, while the soybean AYL was negative in most intercropping systems, indicating that the yield of the soybean in the intercropping system was different and the intercropping system AYL was positive, It is shown that maize-soybean intercropping has intercropping advantage in yield. The system productivity index (SPI) is an index to characterize the productivity and stability of intercropping systems. The results show that the intercropping system considered has higher productivity and stability. In the maize-soybean intercropping system, the economic performance of the corn is increased (the intercropping advantage of the corn is IA0), and the soybean performance is the yield reduction (the soybean I0), and the economic benefit advantage of the intercropping system under the comprehensive action (the intercropping system IA0) is formed. The monetary advantage index is positive, indicating that the corn-soybean intercropping system has the economic advantage. Therefore, the intercropping advantage of maize-soybean intercropping is mainly due to the increase of corn yield and the increase of economic benefit. (3) With respect to Yuyu 22 and soybean intercropping, the corn variety Zheng single 958 and soybean variety (middle yellow 24 and medium yellow 13) have better intercropping advantage in the yield and economic benefit. In the intercropping, the AYL, SPI and IA of Zhengdan 958 were higher than that of Yuyu 22, indicating that the drought-resistant variety, Zhengdan 958, was beneficial to the improvement of intercropping. (4) The composition of the yield of corn and soybean decreased with the increase of planting density. The intercropping increased the ear weight, the ear length, the ear length, the ear weight, the number of grains and the 1000-grain weight of the corn, thereby obviously improving the yield of the single plant and the yield of the group of the corn. The number and the number of grains per plant of most of the soybean were not changed or decreased by intercropping, and the yield of single plant and the yield of the population decreased. The corn AYL was positive at all planting rates, indicating an increase in the yield of maize in all intercropping patterns. The majority of the 2:4 ratio of the soybean AYL was positive, while the 2:2 ratio of the soybean AYL was negative, indicating that the 2:4 planting ratio was 2:2 and the yield of the soybean was increased. (5) The intercropping of intercropping has no significant effect on the photosynthetic rate of maize and soybean. the intercropping increases the absorption of the nitrogen and the phosphorus by the corn crops, and the water consumption of the corn and the soybean is influenced by the intercropping through the influence of the water transport capacity of the root system, So as to improve the water use efficiency of the crops. (6) Compared with the average water use efficiency (WUE) of single-cropping soybean and 2 crops, the intercropping of maize and soybean increased the intercropping of WUE, maize and soybean at the ratio of 4:2. Compared with the single cropping system, the intercropping system enlarges the spatial distribution (root length density) of the lateral and longitudinal directions of the root systems of the two crops, changes the morphological characteristics of the root system of the crops, and increases the ecological position of the corn and the soybean root system to absorb water, thereby improving the absorption and utilization of the water by the crops. (7) There was a negative correlation between the root length density and the land equivalence ratio of maize-soybean intercropping. when intercropping with other planting ratios, the corn-soybean produced more roots when intercropping with 2:2, at the expense of the accumulation of the yield in the sacrifice of reproductive growth, This indicates that the main reason for the increase in yield and WUE is that there is a reasonable trade-off between the development of the root system and the formation of the yield between the corn and the soybean.
【學(xué)位授予單位】:中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S513;S565.1
【相似文獻】
相關(guān)期刊論文 前10條
1 佟屏亞;;介紹一冊別具視角的玉米著作——《玉米與資本主義》[J];古今農(nóng)業(yè);2007年02期
2 尚可;;走下神壇的玉米[J];海洋世界;2011年07期
3 韓長賦;;玉米論略[J];農(nóng)家參謀(種業(yè)大觀);2012年06期
4 張乃鳳 ,白磊;中國也能發(fā)展一個玉米帶[J];土壤肥料;1981年02期
5 王昌瑞;玉米帶葉去雄[J];新農(nóng)業(yè);1982年13期
6 ;洋芋玉米帶田增產(chǎn)顯著[J];甘肅農(nóng)業(yè)科技;1982年03期
7 王佩祥;;談?wù)動衩椎陌踩9躘J];中國農(nóng)墾;1986年06期
8 佟屏亞;;玉米環(huán)球旅行記[J];種子世界;1986年01期
9 佟屏亞;世界玉米產(chǎn)銷形勢及發(fā)展預(yù)測[J];世界農(nóng)業(yè);1987年05期
10 John Fraser Hart,郭謙;美國玉米帶的變遷[J];世界農(nóng)業(yè);1987年09期
相關(guān)會議論文 前10條
1 楊生茂;蘆滿濟;邱進懷;;甘肅省河西灌區(qū)小麥/玉米帶田施N量及其環(huán)境效應(yīng)[A];氮素循環(huán)與農(nóng)業(yè)和環(huán)境學(xué)術(shù)研討會論文(摘要)集[C];2001年
2 佟屏亞;;論中國發(fā)展玉米生產(chǎn)的科技導(dǎo)向[A];全面建設(shè)小康社會——中國科協(xié)二○○三年學(xué)術(shù)年會農(nóng)林水論文精選[C];2003年
3 劉開昌;王慶成;;入世后山東省玉米生產(chǎn)發(fā)展戰(zhàn)略[A];全面建設(shè)小康社會——中國科協(xié)二○○三年學(xué)術(shù)年會農(nóng)林水論文精選[C];2003年
4 黃輝;;玉米生產(chǎn)、市場與技術(shù)發(fā)展情況的思考[A];第五屆中國農(nóng)業(yè)推廣研究征文集[C];2006年
5 楊生茂;郭天文;;河西綠洲灌區(qū)小麥/玉米帶田施氮量及其環(huán)境效應(yīng)[A];《氮素循環(huán)與農(nóng)業(yè)和環(huán)境》專輯——氮素循環(huán)與農(nóng)業(yè)和環(huán)境學(xué)術(shù)討論會論文集[C];2001年
6 秦太辰;;景觀玉米的塑造思路、方法與育種原理[A];2012年全國玉米遺傳育種學(xué)術(shù)研討會暨新品種展示觀摩會論文及摘要集[C];2012年
7 武明宇;郝楠;;淺談玉米抗旱性的研究進展[A];全國旱情監(jiān)測技術(shù)與抗旱減災(zāi)措施論文集[C];2009年
8 劉志忠;劉雅君;;小麥套玉米秋澆覆膜節(jié)水新技術(shù)試驗研究[A];科技創(chuàng)新與經(jīng)濟結(jié)構(gòu)調(diào)整——第七屆內(nèi)蒙古自治區(qū)自然科學(xué)學(xué)術(shù)年會優(yōu)秀論文集[C];2012年
9 張久東;包興國;曹衛(wèi)東;車宗賢;胡志橋;盧秉林;楊文玉;李全福;;間作綠肥作物對玉米產(chǎn)量和土壤肥力的影響[A];面向未來的土壤科學(xué)(下冊)——中國土壤學(xué)會第十二次全國會員代表大會暨第九屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會論文集[C];2012年
10 戴景瑞;王守才;謝友菊;王國英;楊會;張榮;;玉米基因工程與抗蟲玉米育種[A];21世紀作物科技與生產(chǎn)發(fā)展學(xué)術(shù)討論會論文集[C];2002年
相關(guān)重要報紙文章 前10條
1 郭清保;飼企需求降低拖累玉米上漲[N];期貨日報;2006年
2 東華期貨研發(fā)部 陶金峰;利空為玉米期市熱情潑涼水[N];證券時報;2006年
3 格林期貨 崔家悅;玉米震蕩行情將維持多久[N];證券時報;2008年
4 李永合;豐潤時興玉米帶棒青貯[N];中國畜牧報;2004年
5 本報記者 劉旭;玉米市場:出口萎縮引發(fā)躁動[N];國際商報;2004年
6 ;玉米拍賣未有驚喜 震蕩之路仍將延續(xù)[N];中國畜牧獸醫(yī)報;2009年
7 文華;做大玉米經(jīng)濟勢在必行[N];糧油市場報;2002年
8 于德運 李曦;做強玉米經(jīng)濟要提升理性思考[N];吉林日報;2005年
9 本報實習(xí)記者 葉斯琦;新玉米集中上市 靜待臨儲指引[N];中國證券報;2014年
10 聞有成;玉米仍是東北來錢產(chǎn)業(yè)[N];經(jīng)濟參考報;2003年
相關(guān)博士學(xué)位論文 前10條
1 劉志鵬;玉米12個農(nóng)藝性狀的全基因組關(guān)聯(lián)分析及玉米氮響應(yīng)相關(guān)基因的鑒定[D];中國農(nóng)業(yè)大學(xué);2015年
2 陳國棟;間作小麥玉米的水分競爭與生態(tài)位分離機制[D];甘肅農(nóng)業(yè)大學(xué);2015年
3 慈佳賓;玉米DH育種關(guān)鍵技術(shù)研究及不同類型DH系遺傳分析[D];吉林農(nóng)業(yè)大學(xué);2015年
4 葉輝;不同環(huán)境下玉米內(nèi)源激素變異對葉序分化類型的影響研究[D];安徽農(nóng)業(yè)大學(xué);2012年
5 蘇本營;玉米-大豆帶狀套作系統(tǒng)碳平衡研究[D];四川農(nóng)業(yè)大學(xué);2014年
6 任媛媛;黃土塬區(qū)玉米大豆間作系統(tǒng)水分利用研究[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2016年
7 王少杰;黃土高原旱作覆膜玉米不同時期施氮效果及氣態(tài)氮損失[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2016年
8 劉月娥;玉米對區(qū)域光、溫、水資源變化的響應(yīng)研究[D];中國農(nóng)業(yè)科學(xué)院;2013年
9 郝轉(zhuǎn)芳;玉米耐旱主效QTL定位與候選基因鑒定[D];中國農(nóng)業(yè)科學(xué)院;2005年
10 李美;玉米花生間作群體互補競爭及防風(fēng)蝕效應(yīng)研究[D];沈陽農(nóng)業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 閆成輝;玉米自交系87-1BAC文庫的構(gòu)建及Cms-C恢復(fù)基因Rf4區(qū)域BAC克隆的篩選[D];河南農(nóng)業(yè)大學(xué);2011年
2 歐陽偉;伊犁墾區(qū)制種玉米區(qū)劃及可持續(xù)發(fā)展對策的研究[D];石河子大學(xué);2014年
3 閆平;黑龍江省玉米種植變化原因及利弊分析[D];東北農(nóng)業(yè)大學(xué);2015年
4 史倩倩;少耕秸稈覆蓋對小麥間作玉米農(nóng)田碳排放的協(xié)同作用[D];甘肅農(nóng)業(yè)大學(xué);2015年
5 閆妍名;不同栽培模式對玉米產(chǎn)量形成及水溫和氮素利用的影響[D];甘肅農(nóng)業(yè)大學(xué);2015年
6 秦亞洲;根冠互作對小麥間作玉米水分利用效率的影響[D];甘肅農(nóng)業(yè)大學(xué);2015年
7 馬慧慧;阜陽地區(qū)玉米品種生態(tài)適應(yīng)性的分析[D];安徽農(nóng)業(yè)大學(xué);2014年
8 劉洪亮;吉林省高寒山區(qū)玉米品種篩選[D];東北農(nóng)業(yè)大學(xué);2014年
9 王維俊;伊寧縣玉米生產(chǎn)存在問題及發(fā)展對策研究[D];新疆農(nóng)業(yè)大學(xué);2015年
10 趙宗潮;轉(zhuǎn)植酸酶基因玉米自然生態(tài)風(fēng)險評估及其防控技術(shù)研究[D];南京農(nóng)業(yè)大學(xué);2014年
,本文編號:2499217
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2499217.html