大豆疫霉效應(yīng)子PsCRN63調(diào)控植物先天免疫及細胞死亡的功能與作用機制研究
[Abstract]:The innate immunity of a plant is activated after a molecule from a pathogenic microorganism, which comprises a conserved pathogen or a microorganism-related molecular pattern (PMPs/ MMPs) and a variety of effector molecules. The immune response (PTI) and effector-induced immune response (ETI)-induced immune response (ETI), which are triggered by PMPs and effector-related molecular patterns, are two effective weapons for the plant to resist the infection of the pathogen, and constitute the natural immune system of the plant. The toxic pathogenic bacteria can secrete a large amount of effector molecules that can act outside the cell of the plant and can also be transported to the plant cells and function in the cell. The main function of the effector molecule is to inhibit the host immune response, thereby promoting growth and reproduction, and achieving the purpose of successful infection. However, the biochemical and molecular mechanisms of most effector proteins are not clear. Therefore, the study of the function and molecular mechanism of these effect proteins in the pathogenic process will help us to understand the pathogenic mechanism of the pathogenic bacteria and the mechanism of the plant immune. Phytophthora infestans can cause a variety of typical plant diseases on plants, such as Phytophthora infestans and Phytophthora sojae. Phytophthora sojae is a part of oomycetes, which is similar to the fungi in the form, but it has a close relationship with the diatom and the blue-green algae in the evolution, so the germicide designed for the fungus at the present stage is often ineffective for the Phytophthora sojae and other oomycetes. RxLR (R represents arginine, L represents leucine, X represents any amino acid) and CRN (Crinkler) effector molecules are the most important classes in the intracellular effector molecule of the oomycetes. These two types of effector molecules are modular proteins: their N-terminal contains a conserved domain (RxLR and dEOR or LFLAK) and can aid in the transport of effector proteins to the host cell, while the C-terminal is a diverse functional domain that is involved in the regulation of the plant immune response. Because of the lack of sequence similarity to known proteins, it is difficult to predict the function and the mechanism of action of these effector proteins. In this paper, the function of one intracellular effector PsCRN63 in Phytophthora sojae atricolor was analyzed and its possible toxicity mechanism was explored. The main results and conclusions were as follows: Previous studies have shown that the effects of Phytophthora sojae, PsCRN63 (creping and necrosis-inducing proteins), can cause programmed cell death in plants, while the PsCRN115 can block the process; however, both are essential to the pathogenicity of the pathogenic bacteria. Here, we found that the individual expression of the PsCRN63 or the co-expression of the PsCRN63 and the PsCRN115 can inhibit the immune response on the tobacco, and both intracellular effector molecules can interact with the catalase from the tobacco (Nicotiana enthamiana) and the soybean (Glycine max). Further, we have found that when the PsCRN63 is expressed in a plant, the protein of the catalase GmCAT1 (N. benthamiana CATAIL1) in the tobacco and the catalase GmCAT1 in the soybean becomes unstable, and the PsCRN115 can prevent this change. The experimental results show that the instantaneous expression of PsCRN63 in tobacco can lead to the accumulation of hydrogen peroxide (H2O2), and the PsCRN115 is still the opposite. Finally, we find that the transient expression of NbCAT1 or GmCAT1 in tobacco can specifically alleviate the cell death symptoms induced by PsCRN63. Therefore, we assume that PsCRN63/115 regulates the intracellular state of hydrogen peroxide within the cell by interacting with the catalase, thereby regulating the cell death induced on the plant. The results showed that Phytophthora sojae was able to secrete two effector molecules, and through direct interaction with catalase, the cell death and the internal steady state of hydrogen peroxide were regulated, and the immune response of host plants was overcome. Phytophthora sojae effect molecule PsCRN63 regulates the innate immunity of plants by intracellular dimerization. In this study, we found that the effect molecule PsCRN63 of Phytophthora sojae was able to inhibit the expression of the marker gene of the immune (PTI) triggered by the pathogen-related molecular pattern (PAMP), and the expression of the flg22-induced FRK1 gene. However, the PsCRN63 does not inhibit the related events of the signaling pathway upstream of the PTI, including the activation of the flg22-induced MAPK and the phosphorylation of BIK1, which indicates that it acts downstream of the MAPK cascade. The sensitivity of PsCRN63 transgenic Arabidopsis plants to the pathogenic bacteria of Pseudomonas syringae patovar tomas, Pst and Phytophthora capsici was enhanced. In addition, the active oxygen burst induced by flg22 in the PsCRN63 transgenic plant was inhibited compared to the wild-type plant. At the same time, the expression of PTI-related genes was also down-regulated in the transgenic plants of PsCRN63. Interestingly, we found that the N-and C-ends of the PsCRN63 protein were able to interact within the plant cells in a reverse-linked manner to form a homodimer. In addition, the N-and C-terminal domains required to form the dimer are very conserved in the CRN effector molecule, suggesting that the formation of the homologous/ heterologous polymer of the Phytophthora CRN effector molecule is necessary for its biological function. The formation of dimers has proven to be necessary for PsCRN63 to exercise PTI inhibition and cell death induction. The above results can improve our understanding of how to manipulate the plant to promote the infection.
【學(xué)位授予單位】:南京農(nóng)業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S432.4
【相似文獻】
相關(guān)期刊論文 前10條
1 周明華,杜國興,陳正橋,張強,汪利忠;進口大豆中大豆疫霉的檢測及檢疫監(jiān)管[J];植物檢疫;2000年06期
2 李瑩,文景芝,劉春來;大豆疫霉ISSR-PCR反應(yīng)體系的建立[J];東北農(nóng)業(yè)大學(xué)學(xué)報;2005年02期
3 曾娟;王源超;申貴;鄭小波;;大豆疫霉甘油醛-3-磷酸脫氫酶基因在病原物植物互作中誘導(dǎo)表達及其抗氧化作用在酵母遺傳互補系統(tǒng)中的功能驗證[J];科學(xué)通報;2006年10期
4 魯紅俠;王子迎;;大豆疫霉與寄主互作過程中致病性的變化[J];安徽教育學(xué)院學(xué)報;2007年06期
5 陳孝仁;程保平;王新樂;董莎萌;王永林;鄭小波;王源超;;利用綠色熒光蛋白研究大豆疫霉與大豆的互作[J];科學(xué)通報;2009年13期
6 吳翠萍;鄭斯竹;李彬;粟寒;李敏;安榆林;;土壤中大豆疫霉檢測技術(shù)的改進[J];植物檢疫;2010年05期
7 唐慶華;崔林開;苗苗;李德龍;陰偉曉;鄭小波;王源超;;我國部分地區(qū)大豆疫霉群體遺傳分析[J];南京農(nóng)業(yè)大學(xué)學(xué)報;2011年02期
8 王曉鳴,朱振東,馬淑梅,李寶英;大豆疫霉選擇性分離技術(shù)研究[J];植物病理學(xué)報;1998年01期
9 付紅梅;李淼;檀根甲;王子迎;趙平生;;大豆疫霉拮抗菌株的篩選與鑒定[J];安徽農(nóng)業(yè)科學(xué);2011年19期
10 付紅梅;李淼;檀根甲;王子迎;;大豆疫霉拮抗菌株的篩選與鑒定(英文)[J];Plant Diseases and Pests;2011年04期
相關(guān)會議論文 前10條
1 王永林;王曉莉;趙偉;張正光;竇道龍;王源超;;大豆疫霉G蛋白偶聯(lián)受體GPR11的功能研究[A];中國植物病理學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
2 王源超;鄭小波;;大豆疫霉與寄主相互識別與致病機制研究[A];生物入侵與生態(tài)安全——“第一屆全國生物入侵學(xué)術(shù)研討會”論文摘要集[C];2007年
3 張玉梅;趙晉銘;邢邯;林國強;胡潤芳;;大豆抗感種質(zhì)接種大豆疫霉后的比較蛋白質(zhì)組學(xué)研究[A];第23屆全國大豆科研生產(chǎn)研討會論文摘要集[C];2012年
4 蔡萌;畢揚;劉西莉;;大豆疫霉對苯酰菌胺的敏感基線及其抗性機制初探[A];中國植物病理學(xué)會2011年學(xué)術(shù)年會論文集[C];2011年
5 曹舜;楊光紅;蔣冰心;高智謀;;幾種殺菌劑及其復(fù)配劑對大豆疫霉的毒力測定[A];第三屆全國生物入侵大會論文摘要集——“全球變化與生物入侵”[C];2010年
6 華辰雷;鄭小波;王源超;;大豆疫霉對大豆異黃酮趨化性的分子基礎(chǔ)研究[A];江蘇省植物病理學(xué)會第十一次會員代表大會暨學(xué)術(shù)研討會論文集[C];2008年
7 王子迎;王朝霞;沈潔;魯紅俠;;大豆疫霉卵孢子發(fā)育相關(guān)基因的篩選與分析[A];2010年中國菌物學(xué)會學(xué)術(shù)年會論文摘要集[C];2010年
8 王群青;王新樂;于曉麗;韓長志;劉廷利;堯瑤;Tvler B;Dou DL;鄭小波;王源超;;大豆疫霉RxLR類效應(yīng)分子的功能篩選[A];中國植物病理學(xué)會2008年學(xué)術(shù)年會論文集[C];2008年
9 曹舜;陳方新;潘月敏;高智謀;;生防菌BS-4對大豆疫霉的抑制作用研究[A];安徽省昆蟲學(xué)會、安徽省植物病理學(xué)會2012年學(xué)術(shù)年會論文集[C];2012年
10 王永林;李愛寧;黃茜;鄭小波;王源超;;熱激轉(zhuǎn)錄因子PsHSF1在大豆疫霉發(fā)育與致病過程中作用的研究[A];中國植物病理學(xué)會2009年學(xué)術(shù)年會論文集[C];2009年
相關(guān)重要報紙文章 前5條
1 學(xué)友;檢疫監(jiān)管亟待加強[N];農(nóng)民日報;2001年
2 平;發(fā)現(xiàn)細胞死亡新形式[N];健康報;2007年
3 曹麗君;細胞死亡將有新定義?[N];醫(yī)藥經(jīng)濟報;2004年
4 姜巖 魏忠杰 錢錚;2002年諾貝爾醫(yī)學(xué)獎發(fā)現(xiàn)細胞死亡基因規(guī)則[N];中國保險報;2002年
5 編譯 王金元;細胞死亡導(dǎo)致人類變老[N];北京科技報;2005年
相關(guān)博士學(xué)位論文 前10條
1 李琦;大豆疫霉效應(yīng)子PsCRN63調(diào)控植物先天免疫及細胞死亡的功能與作用機制研究[D];南京農(nóng)業(yè)大學(xué);2016年
2 曹舜;短小芽孢桿菌BS-4菌株對大豆疫病的生防作用及其機制研究[D];安徽農(nóng)業(yè)大學(xué);2015年
3 申貴;大豆疫霉侵染大豆早期差異表達基因的篩選與功能分析[D];南京農(nóng)業(yè)大學(xué);2005年
4 王子迎;大豆疫霉群體遺傳結(jié)構(gòu)及致病相關(guān)基因的篩選和功能分析[D];南京農(nóng)業(yè)大學(xué);2006年
5 陳孝仁;大豆疫霉侵染早期機制的分子解析[D];南京農(nóng)業(yè)大學(xué);2007年
6 陰偉曉;大豆疫霉無毒效應(yīng)分子的鑒定及其毒性機理研究[D];南京農(nóng)業(yè)大學(xué);2014年
7 韓長志;大豆疫霉效應(yīng)分子的功能研究[D];南京農(nóng)業(yè)大學(xué);2010年
8 張萌;大豆疫霉MAP kinase PsSAK1信號途徑及MYB轉(zhuǎn)錄因子基因家族的功能分析[D];南京農(nóng)業(yè)大學(xué);2012年
9 劉廷利;大豆疫霉CRN基因家族效應(yīng)分子的功能研究[D];南京農(nóng)業(yè)大學(xué);2010年
10 沈丹宇;大豆疫霉效應(yīng)子分子進化和貴陽腐霉基因組研究[D];南京農(nóng)業(yè)大學(xué);2014年
相關(guān)碩士學(xué)位論文 前10條
1 唐仕妤;大豆疫霉(Phytophthora sojae)不同致病型生物學(xué)性狀差異研究[D];安徽農(nóng)業(yè)大學(xué);2014年
2 姚萌;大豆疫霉Rab GTPase家族蛋白PsVPS21功能分析[D];南京農(nóng)業(yè)大學(xué);2014年
3 蘇黎明;大豆疫霉效應(yīng)分子PsCRN78的功能分析[D];南京農(nóng)業(yè)大學(xué);2014年
4 劉曉云;大豆疫霉ATP結(jié)合盒式蛋白PsABCF1的功能分析[D];南京農(nóng)業(yè)大學(xué);2014年
5 朱華;大豆疫霉生防菌AC29的分離、鑒定與生防機制初步研究[D];南京農(nóng)業(yè)大學(xué);2014年
6 黃慧文;大豆疫霉生防菌T201的篩選、鑒定及其生防效果的研究[D];南京農(nóng)業(yè)大學(xué);2014年
7 楊智娟;大豆疫霉琥珀酸脫氫酶相關(guān)基因PsSDHA的克隆與功能分析[D];安徽農(nóng)業(yè)大學(xué);2015年
8 冷冰雪;安徽宿州地區(qū)大豆疫霉的分離與鑒定[D];安徽農(nóng)業(yè)大學(xué);2015年
9 蔣綠榮;安徽懷遠地區(qū)大豆疫霉的鑒定及rDNA-ITS序列分析[D];安徽農(nóng)業(yè)大學(xué);2015年
10 葉濤;大豆疫霉琥珀酸脫氫酶B亞基克隆與功能分析[D];安徽農(nóng)業(yè)大學(xué);2016年
,本文編號:2452598
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2452598.html