中國楓香樹遺傳多樣性及譜系地理研究
[Abstract]:Liquidambar formosana Hance has a long evolutionary history as a tertiary relic tree species widely distributed in subtropics. Under the background of global climate change, Liquidambar formosana Hance has become one of the hotspots in biodiversity conservation. It is of great significance to study the characteristics and causes of distribution pattern of Liquidambar formosana. The results not only provide a scientific basis for the formulation of conservation strategy of genetic resources of Liquidambar formosana, but also benefit for the scientific management and sustainable utilization and development of genetic resources of Liquidambar formosana. The genetic diversity, pedigree geographic structure and population dynamics of Liquidambar formosana in natural distribution were studied. Based on the existing geographic and climatic data, the distribution patterns of Liquidambar formosana in different periods were reconstructed by using Biomod2 species distribution model. The main results were as follows: (1) This study was conducted from 802 Unigenes of Liquidambar formosana. A total of 10 645 potential SSR marker loci were identified, with an average frequency of 13.22% per 5.28 kb. The main type of SSR duplication in transcriptome was dinucleotide duplication. A total of 14 pairs of polymorphic SSR primers were developed based on transcriptome data. The results showed that the minimum sampling number of Liquidambar formosana population should be 17-26 individuals, and the sampling interval should be more than 50 m. (2) 11 loci were selected from 14 SSR loci, and genetic diversity of 25 populations of Liquidambar formosana was studied. A total of 67 alleles were detected at 11 loci, and the average number of alleles (Na) was observed. The average number of effective alleles (Ne) was 1.9266, the average Shannon information index (I) was 0.8178, and the average observed heterozygosity (Ho) and expected heterozygosity (He) were 0.4090 and 0.4322, respectively. Liquidambar formosana had moderate level of genetic diversity (He = 0.399), among which the Xingyi (XY) population in Guizhou had the highest genetic diversity (He = 0.469). The genetic diversity of Qinba and Guizhou populations in southwest China was the highest (He=0.435), followed by the Dabie Mountains and surrounding hilly and coastal areas. However, the genetic diversity and heterozygote deletion were the lowest in central China. In hot spots with abundant diversity, low genetic diversity of marginal populations may be caused by geographic isolation or founder effect. There was moderate genetic differentiation in Liquidambar formosana population (Fst = 0.0757), and Mantel test showed that there was no significant correlation between population genetic variation and population geographic distance (P 0.05), indicating that geographic isolation did not exist. Population genetic analysis showed that genetic variation of Liquidambar formosana mainly existed among individuals within the population. Therefore, tree selection would be one of the effective methods for genetic improvement by natural variation. UPGMA clustering results showed that 25 populations were divided into three groups with principal components. The results of PCoA and Structurure were identical. (3) Two hundred and fifty-one individuals from 25 populations of Liquidambar formosana were sequenced by using four chloroplast spacer fragments (cpDNA). Based on the integrated 2 732 BP data, 20 polymorphic loci were detected and 20 haplotypes were obtained, 10 of which were specific to a certain population, and 18 populations had one of them. The haplotype of L. formosana was higher than that of L. formosana (Ht = 0.909 + 0.0192), but the average genetic diversity within the population was lower (Hs = 0.323 + 0.0553). The variation of haplotype mainly occurred among populations (Fst = 0.73012), and the low genetic diversity within populations was probably due to the limited gene flow (Nm = 0.18). The haplotype polymorphism Hd was 0.88762, and the total nucleotide polymorphism was 0.00144. Among them, Pingxiang (PX) population in Guangxi had the highest haplotype polymorphism (Hd = 0.75556) with five haplotypes, and Jian'ou (JO) population in Fujian had the highest nucleotide polymorphism (pi = 0.00120). Molecular analysis of variance (AMOVA) showed that most of the chloroplast genetic variations existed among Liquidambar formosana populations (75.34%) and were significantly higher than those within the population (24.66%). Mantel test showed that there was no geographic isolation among Liquidambar formosana populations (P 0.05), and neutral test and mismatch analysis showed that there was no geographic isolation among Liquidambar formosana populations. Haplotype H4 (50/251), followed by H1 (42/251) and H5 (32/251), accounted for 49.4% (124/251) of the total number of individuals with these three haplotypes, and H4 and H1 were the most widely distributed haplotypes. The results of haplotype analysis showed that there might be many refuges for Liquidambar formosana, such as Pingxiang in Guangxi (PX), Xingyi in Guizhou (XY), Huangshan in Anhui (HSAH) in the southwest, and Jian'ou in Fujian (JO) in the east. The common ancestor time of Liquidambar formosana population calculated by loose molecular clock was 10.30 MY. A million years ago (95% HPD: 9.74-15.28), it belonged to the middle and late Tertiary, and the reason of differentiation was the Tertiary geological and climatic events. (4) The geographical distribution pattern of Liquidambar formosana in different historical periods was reconstructed by using 10 species distribution models of Biomod2. The results showed that the optimal distribution area of Liquidambar formosana was consistent with its existing distribution area. The potential geographic distribution of Liquidambar formosana in the past (LIG, LGM) was reconstructed. The phenomenon of "full glacial expansion, interglacial contraction" was found in Liquidambar formosana. The average daily range and the average temperature in the coldest quarter are the most important environmental factors affecting the distribution of Liquidambar formosana, indicating that the most important environmental factor limiting its northward expansion is temperature.
【學位授予單位】:中國林業(yè)科學研究院
【學位級別】:博士
【學位授予年份】:2017
【分類號】:S792.99
【相似文獻】
相關期刊論文 前10條
1 張惠娟,賈昆峰;林木遺傳多樣性與現(xiàn)代林業(yè)[J];內(nèi)蒙古科技與經(jīng)濟;2000年03期
2 尚占環(huán),姚愛興;生物遺傳多樣性研究方法及其保護措施[J];寧夏農(nóng)學院學報;2002年01期
3 蔣楠;作物遺傳多樣性的保護和持續(xù)利用[J];四川教育學院學報;2003年09期
4 張靜;;作物遺傳多樣性的保護和持續(xù)利用[J];神州;2013年17期
5 ;《遺傳多樣性研究的原理與方法》評介[J];動物學研究;2000年02期
6 解新明,云錦鳳;植物遺傳多樣性及其檢測方法[J];中國草地;2000年06期
7 胡守榮,夏銘,郭長英,陸曉春;林木遺傳多樣性研究方法概況[J];東北林業(yè)大學學報;2001年03期
8 陳寬維;“我國家禽遺傳多樣性研究”前景誘人[J];中國家禽;2003年02期
9 朱秀志;彭正松;;四川珍稀林木資源及其遺傳多樣性研究狀況[J];西部林業(yè)科學;2006年04期
10 高秀琴;蘭進好;穆平;林琪;;小麥遺傳多樣性研究進展[J];山東農(nóng)業(yè)科學;2007年03期
相關會議論文 前10條
1 胡志昂;;對我國遺傳多樣性研究的幾點意見[A];生物多樣性研究進展——首屆全國生物多樣性保護與持續(xù)利用研討會論文集[C];1994年
2 何文珊;陸鍵鍵;;分子生物學技術在遺傳多樣性研究中的應用[A];生物多樣性與人類未來——第二屆全國生物多樣性保護與持續(xù)利用研討會論文集[C];1996年
3 劉娟;李貝寧;劉春生;周應群;;栽培對道地甘草遺傳多樣性的影響研究[A];中華中醫(yī)藥學會第十屆中藥鑒定學術會議暨WHO中藥材鑒定方法和技術研討會論文集[C];2010年
4 沈裕琥;王海慶;黃相國;葛菊梅;張懷剛;;作物品種間遺傳多樣性的研究進展[A];21世紀作物科技與生產(chǎn)發(fā)展學術討論會論文集[C];2002年
5 沈裕琥;王海慶;黃相國;葛菊梅;張懷剛;;作物品種間遺傳多樣性的研究進展[A];中國科學院西北高原生物研究會論文集[C];2002年
6 沙偉;林琳;鄭云梅;;小仙鶴蘚遺傳多樣性分析[A];中國植物學會七十五周年年會論文摘要匯編(1933-2008)[C];2008年
7 ;“全國生物遺傳多樣性高峰論壇”日程安排[A];全國生物遺傳多樣性高峰論壇會刊[C];2012年
8 芒來;楊虹;;蒙古馬遺傳多樣性研究進展[A];遺傳學進步與人口健康高峰論壇論文集[C];2007年
9 毛培勝;王新國;黃鶯;;分子標記技術在牧草遺傳多樣性研究中的應用[A];2009中國草原發(fā)展論壇論文集[C];2009年
10 周秋白;鄭宇;周莉;桂建芳;;鄱陽湖鯽魚遺傳多樣性分析[A];中國魚類學會2008學術研討會論文摘要匯編[C];2008年
相關重要報紙文章 前8條
1 胡云章;絢麗的民族文化 豐富的遺傳多樣性[N];大眾科技報;2008年
2 劉霞;人類語言源于非洲再添新證據(jù)[N];科技日報;2011年
3 卞晨光;保護家畜遺傳多樣性刻不容緩[N];中國畜牧獸醫(yī)報;2012年
4 本報記者 游雪晴;中國的人類遺傳多樣性研究成果豐碩[N];科技日報;2001年
5 記者 胡德榮;亞洲人群遺傳多樣性研究獲最新成果[N];健康報;2009年
6 張桂香;中國地方水牛的遺傳多樣性[N];農(nóng)民日報;2004年
7 李倩;不同民族永生細胞庫建設取得進展[N];大眾科技報;2007年
8 李倩;我國永生細胞庫初具規(guī)模[N];人民日報;2007年
相關博士學位論文 前10條
1 孫榮喜;中國楓香樹遺傳多樣性及譜系地理研究[D];中國林業(yè)科學研究院;2017年
2 周蕓蕓;神農(nóng)架川金絲猴的遺傳多樣性及保護研究[D];中央民族大學;2015年
3 彭亮;丹參種質(zhì)資源及其遺傳多樣性研究[D];西北農(nóng)林科技大學;2015年
4 劉海龍;大葉櫸遺傳多樣性與離體保存研究[D];中南林業(yè)科技大學;2015年
5 狄曉艷;油松遺傳多樣性與光合生理生態(tài)特性研究[D];山西大學;2014年
6 陳雪平;茄子遺傳多樣性研究與遺傳連鎖圖譜構建[D];河北農(nóng)業(yè)大學;2015年
7 蔣冬月;柳樹優(yōu)良無性系遺傳多樣性及其重要性狀的關聯(lián)分析[D];中國林業(yè)科學研究院;2015年
8 楊新筍;基于SSR、SNP和形態(tài)學標記的甘薯種質(zhì)資源遺傳多樣性研究[D];中國農(nóng)業(yè)大學;2016年
9 徐群;我國秈稻品種遺傳結構與多樣性的SNP分析[D];中國農(nóng)業(yè)科學院;2016年
10 王濤;番茄遺傳多樣性及幾個重要農(nóng)藝性狀的關聯(lián)分析[D];沈陽農(nóng)業(yè)大學;2016年
相關碩士學位論文 前10條
1 王琳;基于ISSR的連翹遺傳多樣性研究[D];山西農(nóng)業(yè)大學;2015年
2 陳偉帥;小麥抗病遺傳多樣性對條銹病的調(diào)控效應[D];中國農(nóng)業(yè)科學院;2015年
3 王若丁;西藏工布烏頭天然群體的遺傳多樣性分析[D];東北林業(yè)大學;2015年
4 鄧宏中;基于SSR標記的中國水稻地方品種與選育品種遺傳多樣性研究[D];中國農(nóng)業(yè)科學院;2015年
5 劉麗;西藏墨脫地區(qū)野生草莓的遺傳多樣性分析[D];東北林業(yè)大學;2015年
6 張佳佳;沈陽森林動物園丹頂鶴(Grus japonensis)遺傳多樣性分析和親緣關系研究[D];東北林業(yè)大學;2015年
7 梅芳芳;三種水生被子植物在中國六大湖泊的遺傳多樣性[D];華中師范大學;2015年
8 劉鵬;野豌豆屬牧草的遺傳多樣性研究[D];蘭州大學;2015年
9 胡益波;枳遺傳多樣性及其與紅橘雜交后代遺傳研究[D];華中農(nóng)業(yè)大學;2015年
10 馬旭丹;水稻部分骨干親本的指紋圖譜構建和遺傳多樣性分析[D];華中農(nóng)業(yè)大學;2015年
,本文編號:2206573
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2206573.html