天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

長期定位施肥條件下旱地小麥“產(chǎn)量差”影響因子評估

發(fā)布時間:2018-08-26 07:59
【摘要】:旱作小麥“產(chǎn)量差”即雨養(yǎng)小麥生產(chǎn)潛力與農(nóng)田實際產(chǎn)量間的差值,其受氣候要素、肥料、土壤養(yǎng)分以及作物品種等各種因素影響。由于小麥“產(chǎn)量差”影響因子間存在多重共線性,很難對其影響因子進行恰當(dāng)評估。為了維持黃土旱地小麥高產(chǎn)和持續(xù)增產(chǎn),解決小麥“產(chǎn)量差”影響因子評估不當(dāng)?shù)膯栴},本研究以長武長期定位試驗(1984年開始)為依托,選取其中小麥連作6個施肥處理和糧豆輪作4個施肥處理,利用DSSAT模型結(jié)合田間試驗法,模擬雨養(yǎng)小麥生產(chǎn)潛力,評估田塊小麥“產(chǎn)量差”;同時分析氣象要素、土壤養(yǎng)分、土壤水分等時間變化及對小麥“產(chǎn)量差”的影響,最后利用偏最小二乘回歸分析排除變量間的共線問題,定量識別影響黃土旱地長期連作與糧豆輪作下小麥“產(chǎn)量差”的主控因子,對指導(dǎo)黃土旱地地區(qū)小麥生產(chǎn)具有重要意義。本研究的主要結(jié)論如下:(1)DSSAT模型適合在黃土旱地應(yīng)用,研究區(qū)雨養(yǎng)小麥生產(chǎn)潛力為8324 kg·hm-2。長期定位試驗種植31年(1984-2014)對小麥“產(chǎn)量差”分析表明,小麥連作不施肥(CK)和單施化肥中小麥“產(chǎn)量差”顯著高于單施有機肥(M)、氮磷(NP)和氮磷有機肥(NPM)配施中小麥“產(chǎn)量差”,其中單施P中小麥“產(chǎn)量差”最高,達到6996 kg·hm-2;肥料貢獻率在單施磷肥中呈抑制作用,大小為-18.3 kg·kg-1,降水利用率在P處理中最低,NPM處理中最高,分別為2.34 kg·mm-1·hm-2和7.45 kg·mm-1·hm-2。糧豆輪作中小麥“產(chǎn)量差”在CK中最高,NPM中最低;肥料貢獻率和降水利用率最高值出現(xiàn)在NPM中,最低值在CK中。同一降水年型下不施肥和單施化肥中小麥“產(chǎn)量差”高于有機肥和肥料配施中小麥“產(chǎn)量差”,肥料貢獻率和降水利用率在肥料配施下高于單施肥和不施肥處理;各個施肥處理中小麥“產(chǎn)量差”干旱年平水年豐水年,其中肥料配施中效果最明顯。(2)氣象要素在長期定位31年間分析發(fā)現(xiàn),小麥生育期積溫、平均溫度、太陽輻射、休閑期降水和生育年(休閑期+生育期)降水呈現(xiàn)增加趨勢,生育期降水呈現(xiàn)降低趨勢,月降水中3、5、6、10、12月間呈現(xiàn)降低趨勢,其他月份呈現(xiàn)增加趨勢。氣象要素間相關(guān)分析表明,干旱年、豐水年和31年中,小麥生育年降水與休閑期降水之間呈現(xiàn)出極顯著相關(guān)關(guān)系,相關(guān)系數(shù)分別為0.816、0.832和0.901,干旱年下生育年降水和9月、12月份降水間相關(guān)系數(shù)分別為0.619和-0.688,豐水年下,生育年降水與8月份降水間呈現(xiàn)出極顯著正相關(guān)關(guān)系。不同施肥處理下,小麥“產(chǎn)量差”與休閑期降水、生育年降水和9月份降水之間呈現(xiàn)出顯著負相關(guān),12月份降水間呈現(xiàn)正相關(guān)關(guān)系。(3)長期連作與糧豆輪作施肥下土壤養(yǎng)分分析發(fā)現(xiàn),CK和單施N處理下土壤有機質(zhì)、土壤全氮、有效磷、速效鉀基本維持一個水平,年際間波動范圍較小。截止至2014年,連作中單施P中有效磷比試驗初期提高了12.39倍,NP配施中速效鉀比試驗初期降低了9.58%,NPM中各個養(yǎng)分與試驗初期比呈顯著增加趨勢;小麥“產(chǎn)量差”與CK中速效鉀呈現(xiàn)顯著正相關(guān),與P處理中土壤養(yǎng)分呈現(xiàn)顯著正相關(guān),其他處理中小麥“產(chǎn)量差”均與養(yǎng)分間呈現(xiàn)負相關(guān)。截止至2014年,糧豆輪作中P處理下土壤速效磷比試驗初期提高了12.90倍,NP處理中土壤速效鉀比試驗初期降低了14.69%,NPM配施下各個養(yǎng)分顯著高于試驗初期;小麥“產(chǎn)量差”與各個施肥水平下土壤養(yǎng)分均呈現(xiàn)負相關(guān)關(guān)系。(4)長期連作與糧豆輪作施肥下土壤水分分析發(fā)現(xiàn),連作中單施P中播種期和收獲期儲水量多年均值最高,NPM配施中最低;土壤消耗水絕對值和小麥耗水量在NP處理中最高,土壤消耗水絕對值和小麥耗水量在單施P中最低,分別為70.55 mm和347.65 mm;水分利用效率肥料配施中顯著高于不施肥和單施肥;相關(guān)分析發(fā)現(xiàn),小麥“產(chǎn)量差”與單施N和NPM配施下播種期儲水量和小麥耗水量間存在顯著負相關(guān),與土壤耗水量間存在顯著正相關(guān)。糧豆輪作中土壤耗水量絕對值和小麥耗水量在CK中最低;播種期和收獲期儲水量、水分利用效率不同施肥間變化趨勢與連作中類似;小麥“產(chǎn)量差”與單施P中播種期儲水量和小麥耗水量間呈顯著負相關(guān),與土壤耗水量呈顯著正相關(guān),相關(guān)系數(shù)分別為-0.700,-0.817和0.826。(5)針對小麥“產(chǎn)量差”與降水因子間做多重線性檢驗可知,許多降水因子間存在多重共線性,特別是生育年降水與休閑期降水和生育期降水間存在嚴重多重共線問題。使用偏最小二乘回歸分析可有效解決自變量間多重共線問題,連作、糧豆輪作、連作與糧豆輪作組合模型中均表明,第一成分和第二成分對小麥“產(chǎn)量差”的解釋性相對較大,兩個成分的累積解釋性在三個模型中,分別達到66.7%、84.4%和74.9%,偏最小二乘回歸分析中,第一和第二成分主要是由氮肥、磷肥、有機肥主導(dǎo);通過自變量的變量投影重要性指標(biāo)(VIP值)可以看出三個模型中,氮、磷、有機肥、休閑期降水和生育年降水對小麥“產(chǎn)量差”起著重要影響(VIP1),而生育期積溫、平均溫度、太陽總輻射、小麥品種、種植方式等對小麥“產(chǎn)量差”作用相對較弱(VIP1);從變量的回歸系數(shù)來看,小麥“產(chǎn)量差”隨著施肥量和休閑期和生育年降水量的增加而降低。
[Abstract]:The "yield difference" of dry-farmed wheat is the difference between the potential productivity of rain-fed wheat and the actual yield of farmland. It is affected by various factors such as climatic factors, fertilizers, soil nutrients and crop varieties. In order to solve the problem of inappropriate evaluation of influencing factors of "poor yield" in wheat production, a long-term positioning experiment in Changwu (since 1984) was carried out. Six fertilization treatments and four fertilization treatments of grain and soybean rotation were selected for wheat continuous cropping. The productivity potential of rain-fed wheat was evaluated by DSSAT model combined with field experiment. At the same time, the temporal variation of meteorological factors, soil nutrients, soil moisture and their effects on wheat yield difference were analyzed. Finally, the collinearity between variables was eliminated by partial least squares regression analysis, and the main controlling factors of wheat yield difference under long-term continuous cropping and crop-bean rotation were identified quantitatively. The main conclusions of this study are as follows: (1) DSSAT model is suitable for the application in the Loess dryland. The potential productivity of rain-fed wheat in the study area is 8324 kg 65507 "Yield difference" of wheat was significantly higher than that of single organic fertilizer (M), nitrogen and phosphorus (NP) and nitrogen and phosphorus organic fertilizer (NPM). The highest "yield difference" of wheat was 6996 kg The highest yield difference was found in CK and the lowest in NPM. The highest fertilizer contribution rate and the lowest precipitation utilization rate were found in NPM, and the lowest was found in CK. The contribution rate of fertilizer and the utilization rate of precipitation under combined fertilization were higher than those under single fertilization and non-fertilization, and the effect of fertilization was the most obvious in the drought year with low yield and high water content. Mean temperature, solar radiation, leisure precipitation and growth year (leisure + growth period) precipitation showed an increasing trend, growth period precipitation showed a decreasing trend, monthly precipitation showed a decreasing trend in March, May, June, October and December, and other months showed an increasing trend. The correlation coefficients were 0.816, 0.832 and 0.901, 0.619 and - 0.688, respectively, in drought and September, and 0.619 and - 0.688 in December, respectively. There was a very significant positive correlation between the precipitation of growth year and August precipitation in flood years. The results showed that soil organic matter, total nitrogen, available phosphorus and available potassium in CK and N treatments maintained one level and fluctuated between years. By the end of 2014, the available phosphorus in P increased by 12.39 times, the available potassium in NP decreased by 9.58% and the ratio of each nutrient in NPM to the initial stage of the experiment increased significantly. The yield difference of wheat was positively correlated with the available potassium in CK and positively correlated with the soil nutrient in P treatment. As of 2014, soil available phosphorus under P treatment was 12.90 times higher than that at the beginning of the experiment, soil available potassium under NP treatment was 14.69% lower than that at the beginning of the experiment, and nutrients under NPM combined application were significantly higher than that at the beginning of the experiment. Soil nutrients were negatively correlated at all fertilization levels. (4) Soil water content under long-term continuous cropping and rotation of grain and soybean showed that the average water storage at sowing and harvesting stages was the highest in continuous cropping, and the lowest in NPM application. The lowest water consumption of wheat was 70.55 mm and 347.65 mm under single P application, respectively. The water use efficiency of wheat was significantly higher in combined fertilization than that of non-fertilization and single fertilization. The absolute value of soil water consumption and water consumption of wheat in grain-bean rotation were the lowest in CK; the change trend of water storage and water use efficiency between different fertilization was similar to that in continuous cropping at sowing and harvesting stages; the "yield difference" of wheat was negatively correlated with the water storage and water consumption of wheat at sowing stage of single P application, and positively correlated with soil water consumption. The correlation coefficients were - 0.700, - 0.817 and 0.826. (5) Multiple linear tests were conducted to test the relationship between the "yield difference" and precipitation factors. It was found that there were multiple collinearities among many precipitation factors, especially between the precipitation in the growth year and the fallow period and the precipitation in the growth period. Multiple collinearity among independent variables, continuous cropping, crop-soybean rotation, continuous cropping and crop-soybean rotation combination models showed that the explanations of the first component and the second component for wheat "yield difference" were relatively large. The cumulative explanations of the two components in the three models were 66.7%, 84.4% and 74.9%, respectively. The second component is mainly dominated by nitrogen, phosphorus and organic fertilizers. Through the independent variable projection importance index (VIP value), we can see that nitrogen, phosphorus, organic fertilizer, leisure precipitation and growth year precipitation play an important role in wheat "yield difference" (VIP1), and the growth period accumulated temperature, average temperature, total solar radiation, wheat varieties, seeds and varieties. The effect of planting methods on wheat "yield difference" was relatively weak (VIP1), and the regression coefficient of variables showed that the "yield difference" of wheat decreased with the increase of fertilizer application and precipitation in fallow period and growing year.
【學(xué)位授予單位】:中國科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心
【學(xué)位級別】:博士
【學(xué)位授予年份】:2017
【分類號】:S512.1

【相似文獻】

相關(guān)期刊論文 前10條

1 龔江;侯振安;謝海霞;;長期定位施肥對棉花生長及產(chǎn)量的影響[J];中國棉花;2010年10期

2 聶勝委;黃紹敏;張水清;郭斗斗;張巧萍;張玉亭;寶德俊;陳源泉;;長期定位施肥對土壤效應(yīng)的研究進展[J];土壤;2012年02期

3 王改玲;李立科;郝明德;張萌;;長期定位施肥對土壤重金屬含量的影響及環(huán)境評價[J];水土保持學(xué)報;2010年03期

4 喬云發(fā);韓曉增;趙蘭坡;;長期定位施肥對黑土碳氮儲量的影響[J];農(nóng)業(yè)系統(tǒng)科學(xué)與綜合研究;2011年04期

5 路鈺,董旭,于立宏;遼寧省土壤長期定位監(jiān)測試驗1992~2002年結(jié)果初報[J];土壤通報;2003年04期

6 張大庚;祝艷青;李天來;依艷麗;姜維;;長期定位施肥對保護地土壤鈣素形態(tài)分布的影響[J];水土保持學(xué)報;2011年02期

7 韓曉日;袁程;王月;楊勁峰;李娜;張欣昕;;長期定位施肥對土壤銅、鋅形態(tài)轉(zhuǎn)化及其空間分布的影響[J];水土保持學(xué)報;2011年05期

8 王英;王爽;李偉群;魏丹;周寶庫;王玉峰;;長期定位施肥對土壤生理轉(zhuǎn)化菌群的影響[J];生態(tài)環(huán)境;2008年06期

9 李孟飛;;長期定位施肥對土壤重金屬含量的影響[J];安徽農(nóng)業(yè)科學(xué);2008年14期

10 吐爾遜阿依·艾沙;;長期定位施肥對棉花生長及產(chǎn)量的影響[J];北京農(nóng)業(yè);2011年30期

相關(guān)會議論文 前2條

1 慕韓鋒;王俊;劉康;劉文兆;黨廷輝;王兵;;黃土旱塬長期定位施磷對土壤磷素空間分布及有效性的影響[A];中國地理學(xué)會2007年學(xué)術(shù)年會論文摘要集[C];2007年

2 王冬梅;王曉英;陳保冬;王幼珊;朱永官;;長期定位施肥土壤中的叢枝菌根真菌及其頻度[A];第五次全國土壤生物和生物化學(xué)學(xué)術(shù)研討會論文集[C];2009年

相關(guān)博士學(xué)位論文 前1條

1 胡雨彤;長期定位施肥條件下旱地小麥“產(chǎn)量差”影響因子評估[D];中國科學(xué)院教育部水土保持與生態(tài)環(huán)境研究中心;2017年

相關(guān)碩士學(xué)位論文 前10條

1 陳紅娜;長期定位施肥對棕壤鐵、錳形態(tài)及有效性的影響[D];沈陽農(nóng)業(yè)大學(xué);2016年

2 郭順;長期定位施肥對土壤各形態(tài)K、Ca、Mg及其有效性的影響[D];沈陽農(nóng)業(yè)大學(xué);2016年

3 譚福雷;長期定位施肥對設(shè)施番茄土壤理化性質(zhì)、微生物、產(chǎn)量及品質(zhì)的影響[D];沈陽農(nóng)業(yè)大學(xué);2016年

4 黃馳超;長期定位施肥對土壤鐵形態(tài)及有機碳固定的調(diào)控研究[D];南京農(nóng)業(yè)大學(xué);2015年

5 孫富生;長期定位施肥土壤中重金屬含量及其絡(luò)合機制研究[D];南京農(nóng)業(yè)大學(xué);2015年

6 孫好;長期定位施肥對紅壤肥力及作物的影響[D];福建農(nóng)林大學(xué);2009年

7 晁贏;長期定位施肥對土壤肥力特征及養(yǎng)分吸收利用的影響[D];山東農(nóng)業(yè)大學(xué);2009年

8 劉恩科;長期定位不同施肥制度土壤功能衰退與修復(fù)研究[D];山東農(nóng)業(yè)大學(xué);2004年

9 唐玉姝;長期定位施肥對太湖地區(qū)水稻土酶活性的影響[D];西南大學(xué);2007年

10 郭雋馥;長期定位施肥棕壤及西藏高原土土壤微生物特性研究[D];東北大學(xué);2008年

,

本文編號:2204229

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2204229.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶f3c1e***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com