天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

不同柑橘砧木對(duì)缺硼的響應(yīng)差異及結(jié)構(gòu)變化與代謝機(jī)制

發(fā)布時(shí)間:2018-08-25 11:57
【摘要】:硼是植物必需的微量營(yíng)養(yǎng)元素之一,對(duì)植物的生長(zhǎng)發(fā)育起著十分重要的作用。柑橘是我國(guó)南方的第一大水果,而其大多數(shù)產(chǎn)區(qū)位于我國(guó)土壤有效硼缺乏或嚴(yán)重缺乏的紅壤區(qū)域。近年來,缺硼造成田間大量柑橘葉片出現(xiàn)黃化現(xiàn)象,嚴(yán)重制約了柑橘的產(chǎn)量和品質(zhì)。砧木作為提供根系的材料,對(duì)柑橘的生長(zhǎng)、果實(shí)的品質(zhì)和產(chǎn)量及對(duì)其逆境脅迫的適應(yīng)性和對(duì)抗性等方面都有重要的影響。因此研究不同柑橘砧木對(duì)缺硼響應(yīng)的差異及機(jī)制,能夠?yàn)檫x擇優(yōu)良砧木進(jìn)行柑橘高效優(yōu)質(zhì)生產(chǎn)及對(duì)不同砧木采取相配套的施肥措施提供科學(xué)理論依據(jù)。本研究以枳橙砧木(擬推廣)和枳殼砧木(主栽)為材料,采用營(yíng)養(yǎng)液試驗(yàn),研究了缺硼脅迫下不同砧木在硼利用能力、硼的吸收轉(zhuǎn)運(yùn)以及細(xì)胞壁特性等方面的差異及機(jī)理;利用核磁共振(NMR)和傅里葉紅外光譜(FTIR)技術(shù)分析了細(xì)胞壁有機(jī)碳結(jié)構(gòu)及其組分化學(xué)結(jié)構(gòu)在缺硼后的變化;借助石蠟組織切片、SEM(掃描電鏡)和TEM(透射電鏡)等手段觀察了缺硼后葉片和根系微觀結(jié)構(gòu)上的變化情況;并運(yùn)用基于GC-MS技術(shù)的代謝組學(xué)手段深入探討了枳殼砧木葉片和根系代謝產(chǎn)物與代謝通路對(duì)缺硼脅迫的響應(yīng)及差異。得到的主要結(jié)果如下:(1)缺硼脅迫下枳橙砧木與枳殼砧木在植株生長(zhǎng)及硼利用能力上的差異缺硼顯著抑制了兩種砧木的根系生長(zhǎng),明顯降低了根系參數(shù)(總根長(zhǎng)、根總表面積、根體總積和根尖數(shù));而缺硼對(duì)枳殼砧木根系參數(shù)的抑制程度要大于枳橙。缺硼對(duì)枳殼砧木葉片光合色素的破壞程度大于枳橙砧木,且缺硼顯著降低了枳殼的凈光合速率,對(duì)枳橙則沒有顯著影響,說明枳殼砧木的光合作用更易受到缺硼的影響。這些結(jié)果表明枳橙砧木與枳殼砧木對(duì)缺硼的反應(yīng)存在著差異。無論是正常硼處理還是缺硼處理,枳殼砧木的硼含量和硼積累量都高于枳橙砧木;其葉片和根系中提取的細(xì)胞壁物質(zhì)含量也高于枳橙砧木,且原生質(zhì)體硼占器官總硼的比例顯著高于枳橙,說明枳殼砧木的需硼量高于枳橙;低硼脅迫下枳橙砧木的硼利用效率明顯高于枳殼砧木,比枳殼高了29.13%,表明枳橙砧木能以較低的硼水平產(chǎn)生更多的干物質(zhì)。缺硼顯著提高了兩種砧木葉片和根細(xì)胞壁硼占總硼的比例,枳橙分別增加了192.08%和131.03%,高于枳殼砧木的166.67%和112.70%,說明缺硼條件下枳橙砧木將硼優(yōu)先分配到細(xì)胞壁中的能力更強(qiáng)于枳殼砧木。(2)缺硼脅迫下枳橙砧木與枳殼砧木在硼吸收轉(zhuǎn)運(yùn)上的差異實(shí)時(shí)熒光定量PCR結(jié)果顯示,所選擇的硼相關(guān)基因更多的在枳橙砧木根和老莖中上調(diào)表達(dá),而上調(diào)表達(dá)的基因在枳殼砧木的地上部相對(duì)更多。基因Ci NIP5在枳橙和枳殼根中都顯著上調(diào)表達(dá),促進(jìn)了低硼條件下根系能吸收更多的硼;在硼積累量上表現(xiàn)為缺硼引起的枳橙砧木根中硼積累量所占植株總硼百分比的上升幅度顯著大于枳殼,說明低硼條件下枳橙砧木根的吸收能力可能更強(qiáng)于枳殼。Cm BOR1在枳橙根中上調(diào)表達(dá),使得枳橙砧木根中硼相對(duì)更多地通過木質(zhì)部裝載運(yùn)輸?shù)角o中,枳殼的這種能力更弱一些,枳橙砧木的莖中硼積累量所占比例上升了近一倍,遠(yuǎn)大于枳殼的54.65%,也證明了這一點(diǎn)。枳殼更弱的木質(zhì)部裝載能力導(dǎo)致根中的硼不能較好地向地上部運(yùn)輸,只能通過Ci NIP6、Cm BOR1、Ci NIP5和TIP4;1在葉和/或莖中上調(diào)表達(dá),將地上部有限的硼分配到需要硼的部位,以滿足枳殼砧木地上部對(duì)硼更高的需求。綜上所述,低硼條件下枳橙砧木根系對(duì)硼的持續(xù)吸收能力及通過木質(zhì)部裝載持續(xù)運(yùn)往地上部的能力均強(qiáng)于枳殼,而缺硼條件下枳殼砧木地上部的持續(xù)再分配能力略強(qiáng)于枳橙,這可能與其高需硼量及由根往地上部的硼轉(zhuǎn)運(yùn)能力相對(duì)較低有關(guān)。(3)缺硼脅迫改變了枳橙砧木葉片和根系的膜透性及抗氧化酶活性缺硼抑制了枳橙砧木地上部和根系的生長(zhǎng),根系受缺硼的抑制程度大于地上部;枳橙砧木各部位的硼含量和硼積累量在缺硼后也明顯降低。缺硼處理顯著提高了葉片和根系的MDA含量,根系提高了55.21%,遠(yuǎn)高于葉片的23.85%,表明缺硼使得根系的膜系統(tǒng)受損害更加嚴(yán)重。缺硼后,根系中SOD的活性顯著上升;葉片和根系中的CAT活性均明顯降低,而APX和POD活性則明顯升高,其中變化幅度最大的是根系中的POD活性,增幅高達(dá)117%,這與POD還參與其他代謝途徑有關(guān)。(4)缺硼脅迫影響了枳橙砧木葉片和根系的微觀結(jié)構(gòu)且抑制了細(xì)根的生長(zhǎng)發(fā)育葉片的石蠟切片顯示缺硼處理導(dǎo)致葉片柵欄組織的細(xì)胞排列紊亂,海綿組織的細(xì)胞數(shù)目明顯增多,其在葉肉中所占的比例明顯高于對(duì)照組,且抑制了維管束結(jié)構(gòu)的發(fā)育;葉片的透射電鏡(TEM)觀察顯示缺硼植株的葉綠體內(nèi)積累了較多的淀粉粒,細(xì)胞壁有明顯的增厚現(xiàn)象,且細(xì)胞形態(tài)也發(fā)生了改變。這些結(jié)果表明葉肉組織和維管束結(jié)構(gòu)在短期缺硼后的變化程度還不足以破壞葉片的表皮結(jié)構(gòu),所以我們?cè)谌~片上并沒有觀察到典型的缺硼癥狀;然而這種變化程度已然影響到了光合作用的正常進(jìn)行,造成了淀粉的積累。缺硼條件下,枳橙砧木細(xì)根各根系參數(shù)的下降幅度均明顯大于中根和粗根,降幅均達(dá)一半以上,說明缺硼主要抑制了細(xì)根的生長(zhǎng)發(fā)育;中根和粗根總根長(zhǎng)和根尖數(shù)所占比例顯著上升,表明缺硼造成枳橙砧木根尖變粗膨大。根系的石蠟切片顯示缺硼導(dǎo)致根尖根冠脫落、分生區(qū)細(xì)胞增大及其圓錐形結(jié)構(gòu)消失,同時(shí)造成了疏導(dǎo)組織發(fā)育差,維管束分化不完善;根系的掃描(SEM)和透射(TEM)電鏡觀察表明,缺硼破壞了細(xì)胞內(nèi)部結(jié)構(gòu)的完整性,液泡腫脹破裂,抑制細(xì)胞內(nèi)物質(zhì)的合成與維管束的發(fā)育,導(dǎo)管口徑變小,并伴有堵塞現(xiàn)象,韌皮部篩管口堵塞嚴(yán)重,使細(xì)胞壁明顯增厚,以上結(jié)果都解釋了根尖出現(xiàn)短粗膨大的原因。(5)缺硼脅迫破壞了枳橙砧木根系細(xì)胞壁的正;瘜W(xué)結(jié)構(gòu)缺硼使枳橙砧木新根的生長(zhǎng)受到了明顯的抑制;新生部位(新根、新葉、新梢)硼含量和硼積累量都顯著降低;缺硼提高了每單位根系鮮重細(xì)胞壁物質(zhì)的含量,且細(xì)胞壁硼含量占根總硼的比例顯著增加了143.2%。從細(xì)胞壁傅里葉紅外光譜(FTIR)圖譜來看,缺硼降低了細(xì)胞壁中果膠及蛋白的相對(duì)含量,并影響了細(xì)胞壁的正常結(jié)構(gòu):使細(xì)胞壁中的氫鍵發(fā)生改變,破壞了細(xì)胞壁大分子之間的連接模式;降低了細(xì)胞壁中果膠酯化交聯(lián)的程度,破壞了細(xì)胞壁中果膠的網(wǎng)絡(luò)結(jié)構(gòu);且改變了細(xì)胞壁蛋白的結(jié)構(gòu)。(6)缺硼脅迫改變了枳殼砧木葉片和根系的代謝產(chǎn)物和代謝途徑利用基于氣相色譜-質(zhì)譜聯(lián)用技術(shù)(GC-MS)的代謝組學(xué)手段,研究了柑橘枳殼砧木幼苗葉片和根系對(duì)缺硼的代謝響應(yīng),結(jié)果表明缺硼后葉片和根系代謝物和代謝途徑的變化存在較大的差異,說明植物不同器官對(duì)缺硼的代謝響應(yīng)是不同的。缺硼會(huì)引起葉片和根系中很多代謝物的變化,葉片以糖類和芳香族化合物的變化為主,而根系氨基酸和糖類變化更大。缺硼后在葉片中變化較大代謝物有:蜜二糖和核糖顯著增加;半乳糖酸、景天庚酮糖、4-羥基肉桂酸、阿魏酸、棕櫚酸、芥子酸顯著降低;根系中顯著增加的代謝物有:天冬酰胺、蘇氨酸、色氨酸、阿魏酸、芥子酸。其中天冬酰胺在根系和葉片中都增加,而半乳糖酸則都減少;阿魏酸和芥子酸的變化趨勢(shì)在根系和葉片中相反。缺硼導(dǎo)致了磷酸戊糖途徑(PPP)的下調(diào)、抑制了糖的利用,進(jìn)而使得葉片中的糖類過量積累;根中大多數(shù)氨基酸水平顯著增高與蛋白生物合成的降低、回補(bǔ)途徑的增強(qiáng)和根尖組織損傷有關(guān)。另外,缺硼也對(duì)葉片和根系中的莽草酸途徑(Shikimate pathway)產(chǎn)生了顯著的影響,由于缺硼抑制了體內(nèi)糖的利用而引起葉片中莽草酸途徑中4-羥基肉桂酸、阿魏酸和芥子酸的含量降低,而根中莽草酸途徑的整體上調(diào)與根尖缺硼癥狀(根尖木栓化、膨大)密切相關(guān)。
[Abstract]:Boron is one of the essential micronutrients for plants and plays an important role in the growth and development of plants. Citrus is the largest fruit in the south of China. Most of its producing areas are located in the red soil areas where the available boron in soil is deficient or seriously deficient. Rootstocks, as root materials, play an important role in citrus growth, fruit quality and yield, adaptability to stress and resistance. Therefore, studying the differences and mechanisms of Different Citrus Rootstocks in response to boron deficiency can help to select good rootstocks for citrus high quality and efficiency. In this study, the difference and mechanism of boron utilization ability, boron uptake and transport, and cell wall characteristics of different rootstocks under boron deficiency stress were studied by nutrient solution test with orange rootstock (to be popularized) and orange shell rootstock (to be planted). Nuclear magnetic resonance (NMR) and Fourier transform infrared spectroscopy (FTIR) were used to analyze the structural and chemical changes of cell wall organic carbon (OC) after boron deficiency. The main results were as follows: (1) Boron deficiency significantly inhibited the root growth of orange rootstocks and trifoliate rootstocks, and significantly reduced the root growth of the two rootstocks. The root parameters (total root length, total root surface area, total root volume and number of root tips) were determined, while the inhibition of boron deficiency on root parameters of trifoliate orange rootstock was greater than that of trifoliate orange. The results showed that the reaction of Citrus aurantii Rootstock to boron deficiency was different from that of Citrus aurantii rootstock. The ratio of protoplast boron to total organ boron of orange rootstock was significantly higher than that of orange, indicating that the boron requirement of orange rootstock was higher than that of orange. The boron utilization efficiency of orange rootstock under low boron stress was significantly higher than that of orange rootstock, 29.13% higher than that of orange rootstock, indicating that orange rootstock could produce more dry matter at lower boron level. The ratio of boron to total boron in leaves and cell walls of Rootstocks increased by 192.08% and 131.03% respectively, which was higher than that of trifoliate rootstocks by 166.67% and 112.70%. This indicated that the boron preferential allocation ability of trifoliate Rootstocks to cell walls was stronger than that of trifoliate rootstocks under boron deficiency stress. (2) The difference of Boron Absorption and transport between trifoliate rootstocks and trifoliate rootstocks under boron defici The results of hetero-real-time fluorescence quantitative PCR showed that the selected boron-related genes were up-regulated in the roots and old stems of orange rootstocks, and the up-regulated genes were up-regulated in the shoots of orange rootstocks. The accumulation of boron in Rootstock Roots of orange caused by boron deficiency increased significantly more than that of Fructus aurantii, suggesting that the absorption capacity of Rootstock Roots of orange under low boron condition might be stronger than that of Fructus aurantii. The boron accumulation in the stem of the rootstock was nearly doubled, which was much higher than that of the Fructus aurantii (54.65%). In summary, the ability of root system to absorb boron and transport boron to the shoot through the xylem of orange rootstock under low boron condition was stronger than that of orange rootstock under boron deficiency condition. The above-ground redistribution ability of Rootstocks was slightly stronger than that of oranges, which might be related to their high boron requirement and relatively low boron transport capacity from root to shoot. (3) Boron deficiency stress changed the membrane permeability and antioxidant enzyme activity of leaves and roots of orange rootstocks. Boron deficiency inhibited the above-ground and root growth of orange rootstocks. The content of MDA in leaves and roots was increased by 55.21%, which was much higher than that in leaves by 23.85%. It indicated that boron deficiency caused more serious damage to the membrane system of roots. The activity of CAT in leaves and roots decreased significantly, while the activity of APX and POD increased significantly. The most significant change was that POD activity in roots increased by 117%, which was related to the participation of POD in other metabolic pathways. (4) Boron deficiency stress affected the microstructure of leaves and roots and inhibited the growth of fine roots. Paraffin section showed that boron deficiency caused disorder of cell arrangement in palisade tissues and increased the number of cells in spongy tissues. The proportion of cells in mesophyll was significantly higher than that in control group, and inhibited the development of vascular bundle structure. These results indicate that the changes of mesophyll and vascular bundle structure after short-term boron deficiency are not enough to destroy the epidermal structure of leaves, so we have not observed the typical symptoms of boron deficiency in leaves; however, the degree of such changes has already been observed. Under the condition of boron deficiency, the decrease of root parameters of fine roots of orange rootstock was more than half of that of medium roots and coarse roots, which indicated that boron deficiency mainly inhibited the growth and development of fine roots, and the proportion of total root length and number of root tips of middle roots and coarse roots increased significantly. The paraffin section of roots showed that boron deficiency caused the root apex shedding, the cell growth in meristematic zone and the disappearance of conical structure. At the same time, it caused the poor development of drainage tissue and the imperfect differentiation of vascular bundles. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) observation of roots showed that boron deficiency destroyed the inner structure of cells. The intactness, the swelling and rupture of vacuoles, the inhibition of the synthesis of intracellular substances and the development of vascular bundles, the smaller diameter of ducts, accompanied by blockage, the serious blockage of phloem sieve canal orifice, and the obvious thickening of cell wall, all these results explained why the root tips were short and bulky. (5) Boron deficiency stress destroyed the normal root cell wall of orange rootstocks. Boron deficiency in chemical structure significantly inhibited the growth of new roots of orange rootstocks; boron content and accumulation in new parts (new roots, new leaves, new shoots) decreased significantly; boron deficiency increased the content of cell wall substances per unit root weight, and the ratio of cell wall boron content to total root boron increased significantly by 143.2%. According to FTIR spectra, boron deficiency decreased the relative content of pectin and protein in cell wall, and affected the normal structure of cell wall. (6) Boron deficiency stress altered metabolic products and pathways in leaves and roots of Citrus aurantium rootstocks. The metabolic responses of leaves and roots of citrus aurantium Rootstocks to boron deficiency were studied by GC-MS. The metabolites and metabolic pathways varied greatly, suggesting that different organs of plants responded differently to boron deficiency. Boron deficiency could cause changes in many metabolites in leaves and roots. The changes of carbohydrates and aromatic compounds in leaves were dominant, while the changes of amino acids and carbohydrates in roots were greater. Metabolites were: significant increases in melittose and ribose; significant decreases in galactic acid, Sedum heptanone sugar, 4-hydroxycinnamic acid, ferulic acid, palmitic acid and sinapic acid; and significant increases in root metabolism were asparagine, threonine, tryptophan, ferulic acid and sinapic acid, in which asparagine increased in roots and leaves, while galactic acid decreased Boron deficiency led to the down-regulation of pentose phosphate pathway (PPP), inhibited the utilization of sugar, and consequently led to the excessive accumulation of carbohydrates in leaves. The significant increase of most amino acids in roots was related to the decrease of protein biosynthesis, the enhancement of replenishment pathway and the damage of root tips. In addition, boron deficiency also had a significant effect on the Shikimate pathway in leaves and roots. As boron deficiency inhibited the utilization of sugar in vivo, the contents of 4-hydroxycinnamic acid, ferulic acid and sinapic acid in the shikimate pathway decreased, while the shikimate pathway in roots was up-regulated and the symptoms of boron deficiency in root tips were observed. Cork and expansion are closely related.
【學(xué)位授予單位】:華中農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S666

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 劉磊超;姜存?zhèn)};董肖昌;劉桂東;盧曉佩;;不同施硼方式對(duì)枳橙砧木生理生化特性的影響[J];華中農(nóng)業(yè)大學(xué)學(xué)報(bào);2016年01期

2 劉磊超;姜存?zhèn)};董肖昌;吳秀文;劉桂東;盧曉佩;;硼脅迫對(duì)枳橙砧木細(xì)根根尖成熟區(qū)和幼嫩葉片細(xì)胞結(jié)構(gòu)的影響[J];中國(guó)農(nóng)業(yè)科學(xué);2015年24期

3 吳亞萍;王國(guó)祥;劉金娥;余培培;徐杰;;互花米草凋落物有機(jī)碳在不同發(fā)育階段鹽沼中的分解動(dòng)態(tài)[J];生態(tài)學(xué)雜志;2015年10期

4 劉磊超;姜存?zhèn)};劉桂東;董肖昌;吳秀文;;低硼脅迫對(duì)柑橘枳橙砧木生長(zhǎng)及營(yíng)養(yǎng)生理的影響[J];華中農(nóng)業(yè)大學(xué)學(xué)報(bào);2015年03期

5 張璐;杜相革;;植物水孔蛋白研究進(jìn)展[J];植物科學(xué)學(xué)報(bào);2014年03期

6 劉磊超;姜存?zhèn)};劉桂東;董肖昌;;硼在植物體內(nèi)的生理效應(yīng)及其對(duì)幾種重要代謝產(chǎn)物影響的研究進(jìn)展[J];中國(guó)農(nóng)學(xué)通報(bào);2014年06期

7 焦曉燕;王勁松;武愛蓮;趙瑞芬;王立革;董二偉;;缺硼對(duì)綠豆葉片光合特性和碳水化合物含量的影響[J];植物營(yíng)養(yǎng)與肥料學(xué)報(bào);2013年03期

8 李爽;彭抒昂;劉永忠;周高峰;楊成泉;;缺硼導(dǎo)致柑橘葉脈和果實(shí)導(dǎo)管分子形態(tài)畸形的觀察[J];植物科學(xué)學(xué)報(bào);2012年06期

9 黃玉芬;黃隆斌;嚴(yán)小龍;廖紅;;磷硼耦合脅迫對(duì)大豆生長(zhǎng)和磷、硼吸收的影響及基因型差異[J];華南農(nóng)業(yè)大學(xué)學(xué)報(bào);2012年02期

10 張濤;劉世琦;孫齊;陳祥偉;劉穎穎;宋曉紅;;硼對(duì)“洋蔥型”畸形大蒜形成及其生理的影響[J];園藝學(xué)報(bào);2012年01期

相關(guān)博士學(xué)位論文 前4條

1 劉桂東;紐荷爾臍橙缺硼的砧木效應(yīng)及葉片結(jié)構(gòu)變化與代謝響應(yīng)研究[D];華中農(nóng)業(yè)大學(xué);2014年

2 安吉翠;柑橘硼運(yùn)輸基因CiNIP5和CiNIP6的克隆和功能鑒定[D];華中農(nóng)業(yè)大學(xué);2012年

3 王秋君;稻麥輪作系統(tǒng)中施用有機(jī)無機(jī)復(fù)混肥對(duì)作物生長(zhǎng)及土壤肥力的影響[D];南京農(nóng)業(yè)大學(xué);2012年

4 孫進(jìn)華;甘藍(lán)型油菜硼轉(zhuǎn)運(yùn)子基因的克隆、表達(dá)和分子進(jìn)化[D];華中農(nóng)業(yè)大學(xué);2011年

相關(guān)碩士學(xué)位論文 前3條

1 杜梨梨;缺硼對(duì)紐荷爾臍橙果實(shí)發(fā)育期葉片生理生化的影響[D];華中農(nóng)業(yè)大學(xué);2009年

2 王素青;柑橘體細(xì)胞雜種和缺硼紐荷爾臍橙的解剖結(jié)構(gòu)研究[D];華中農(nóng)業(yè)大學(xué);2008年

3 劉霞;兩種柑橘體細(xì)胞雜種砧木資源與主要砧木類型根系解剖結(jié)構(gòu)的比較研究[D];華中農(nóng)業(yè)大學(xué);2007年



本文編號(hào):2202808

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2202808.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶e1fd6***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請(qǐng)E-mail郵箱bigeng88@qq.com