小菜蛾對氯蟲苯甲酰胺的抗性機制及溴氰蟲酰胺對小菜蛾生物學特性的影響
[Abstract]:Plutella xylostella L. (Plutella xylostella L.) belongs to Lepidoptera (Plutella), which is a worldwide pest and is harmful to cruciferous vegetables. At present, chemical pesticides are still mainly used to control Plutella xylostella at home and abroad. However, Plutella xylostella has strong fecundity and environmental adaptability, and insecticides are unreasonable. Plutella xylostella has developed serious resistance to various insecticides due to its extensive use. O-formylaminobenzamide insecticides are a new class of insecticides that act on fish nidine receptors. By interfering with the release of calcium ions, they disrupt the normal physiological activities of insects, resulting in the cessation of insect feeding and eventually cause death. The unique mechanism of action, remarkable insecticidal effect, little toxicity to beneficial arthropods and environmental safety are the most popular insecticides against Lepidoptera pests such as Plutella xylostella, but their resistance problems are also highlighted quickly. The main results are as follows: 1. The resistance of 52 generations of Plutella xylostella to chloroform benzamide reached 48.2 times. The resistance of F1~F8 to chloroform benzamide was found by successive leaf soaking. The resistance stability test showed that the resistance of Plutella xylostella to chloroform benzamide was unstable. After rearing the resistant strains for six generations without contact with pesticides, the resistance multiple decreased to 14.9 times. This indicated that the resistance was easy to restore. The results of cross-resistance showed that the chloroform-resistant strains of Plutella xylostella exhibited 7.29 and 3.31 times cross-resistance to fluorobenzamide and deltamethamide respectively, but no cross-resistance to chlorpyrifos, beta-cypermethrin, methamidoavermectin benzoate, bromoconitin, polyfungicides, fluorobollworm urea and tebufenozide. These insecticides were used alternately with chloramphenicol benzamide to delay resistance. 3. Resistance genetic experiments showed that the resistance of diamondback moth to chloramphenicol benzamide was autosomal and incompletely dominant. There was no significant slope at the mortality rate of 50%, indicating that the resistance of Plutella xylostella to chloroform benzamide was controlled by several genes. At the same time, the suitability test further proved the above results. 4. The relative suitability of resistance strains of Plutella xylostella to chloroform benzamide was analyzed by constructed life table method. Compared with the susceptible strain, the larval duration of resistant strain Plutella xylostella was prolonged by about 1.5 days, and the pupae duration was also prolonged. The egg hatching rate, the emergence rate of larvae and the single female spawning rate were significantly decreased. The intrinsic growth rate and the net increment rate were also decreased. The activity of cytochrome P450 in the resistant strain was significantly higher than that in the sensitive strain, which was 4.26 times higher than that in the sensitive strain, while esterase and glutathione S-transferase, peroxidase and hydrogen peroxide were the metabolic enzymes. There was no significant difference between the two protective enzymes. The results of synergism test showed that the toxicity of PBO and chlorobenzamide to Plutella xylostella increased significantly, indicating that cytochrome P450 played an important role in the formation of resistance to chlorobenzamide in Plutella xylostella. The expression of CYP6BF1V1 in resistant strains was 8.9 times higher than that in susceptible strains, and the expression of CYP6BG1 and CYP6CV2 were 3.5 and 3.2 times higher than that in susceptible strains, respectively. In order to study the target resistance mechanism of Plutella xylostella to chloroform benzamide, the PxRyR gene was cloned with a length of 15,643 BP and an open reading frame of 15,372 bp, which could encode 5,123 amino acids. The amino acid secondary structure analysis showed that there were five transmembrane regions at the C-terminal, which could form functional C a2+ channels. Further analysis of the structure domain by MOTIF Search showed that Plutella xylostella nicotine receptor included RYR domain, RIH domain, inositol triphosphate and fish nicotine receptor, which jointly controlled calcium release structure. No amino acid mutation was found by comparing the amino acid sequences of the fish nidine receptor of the sensitive resistant population with DNA MAN. However, the fluorescence quantitative analysis showed that the level of the fish nidine receptor transcription of the chloroform-resistant strain was 6.0 times higher than that of the sensitive strain, and the amount of the target receptor was also an important factor for resistance. Compared with the control, the duration, pupation period, pupation rate and eclosion rate of the 4th instar larvae of Plutella xylostella were significantly prolonged, and the pupation rate and eclosion rate were significantly decreased, which were in direct proportion to the concentration of bromocyanamide. In addition, LC50 treatment could significantly reduce the single female oviposition of Plutella xylostella, but there was no significant difference between LC20 treatment and control. The results showed that bromocyanamide had significant adverse effects on the growth and reproduction of Plutella xylostella. However, further observation of its F1 generation showed that except for LC20 treatment, bromocyanamide had significant adverse effects on the growth and reproduction of Plutella xylostella. LC50 bromocyanamide treatment significantly prolonged the duration of F1 eggs, other biological indicators were not significantly changed.
【學位授予單位】:山東農(nóng)業(yè)大學
【學位級別】:博士
【學位授予年份】:2016
【分類號】:S433.4
【相似文獻】
相關(guān)期刊論文 前10條
1 謝偉勝;;氯蟲苯甲酰胺國內(nèi)專利發(fā)展動態(tài)[J];農(nóng)藥研究與應用;2012年06期
2 周小軍;朱國念;何錦豪;;氯蟲苯甲酰胺防治超級稻二化螟的效果[J];浙江農(nóng)業(yè)科學;2009年04期
3 ;關(guān)于熱門品種氟蟲雙酰胺與氯蟲苯甲酰胺的述評[J];農(nóng)藥市場信息;2009年16期
4 張發(fā)成;盛仙俏;陳桂華;鄭能文;賈華湊;廖璇剛;;氯蟲苯甲酰胺對水稻一代二化螟防效及對稻田蜘蛛的影響[J];中國稻米;2009年05期
5 秦冬梅;秦旭;徐應明;孫揚;梁學峰;戴曉華;;土壤和番茄中氯蟲苯甲酰胺的殘留檢測與消解動態(tài)研究[J];農(nóng)業(yè)環(huán)境科學學報;2010年05期
6 李翠英;;氯蟲苯甲酰胺[J];湖南農(nóng)業(yè);2010年10期
7 吳毅;陳遠軍;王敏;;氯蟲苯甲酰胺的應用及推廣前景[J];農(nóng)藥科學與管理;2010年11期
8 張芳;于淦軍;姜德義;;稻;煸詤^(qū)慎用氯蟲苯甲酰胺[J];農(nóng)藥市場信息;2010年21期
9 陳小軍;費春;樊麗萍;楊益眾;;氯蟲苯甲酰胺在大豆植株中的內(nèi)吸傳導特性[J];中國農(nóng)業(yè)科學;2011年11期
10 張懷江;仇貴生;閆文濤;陳漢杰;張平;鄭運城;劉池林;;氯蟲苯甲酰胺對蘋果樹主要害蟲的控制作用及天敵的影響[J];環(huán)境昆蟲學報;2011年04期
相關(guān)會議論文 前4條
1 賀敏;賈春虹;朱曉丹;趙爾成;余平中;陳莉;;超高效液相色譜法測定玉米中氯蟲苯甲酰胺殘留量[A];第七屆全國儀器分析及樣品預處理學術(shù)研討會論文集[C];2013年
2 段愛菊;劉順通;張自啟;劉長營;;35%氯蟲苯甲酰胺WG防治幾種鱗翅目害蟲田間藥效[A];華中昆蟲研究(第6卷)[C];2010年
3 程勤海;陸志杰;陳國祥;金周浩;;氯蟲苯甲酰胺等4種單劑對稻縱卷葉螟的田間控制作用探析[A];植物保護與農(nóng)產(chǎn)品質(zhì)量安全論文集[C];2008年
4 祝中華;寧秀珍;;20%氯蟲苯甲酰胺防治二化螟和稻縱卷葉螟試驗效果初探[A];植物保護與農(nóng)產(chǎn)品質(zhì)量安全論文集[C];2008年
相關(guān)重要報紙文章 前8條
1 本報記者 譚立云;氯蟲苯甲酰胺、氟蟲雙酰胺假貨出現(xiàn)[N];江蘇農(nóng)業(yè)科技報;2009年
2 記者施鶯;我市破獲首起假冒化合物專利案[N];南通日報;2010年
3 記者施鶯;全國最大農(nóng)藥產(chǎn)品專利侵權(quán)案在通告破[N];南通日報;2010年
4 陳立;氯蟲苯甲酰胺主攻稻縱卷葉螟[N];農(nóng)資導報;2010年
5 于丹;氯蟲苯甲酰胺治玉米螟安全有效[N];江蘇農(nóng)業(yè)科技報;2008年
6 鼎城區(qū)農(nóng)業(yè)局辦公室 許光;如何防治第一代二化螟[N];常德日報;2011年
7 市農(nóng)業(yè)局植保植檢站;水稻7月病蟲防治意見[N];常德日報;2010年
8 記者 嚴冬蓮;今年我市中、晚稻病蟲中等偏重發(fā)生[N];郴州日報;2009年
相關(guān)博士學位論文 前3條
1 張祥丹;氯蟲苯甲酰胺在水環(huán)境中的化學行為研究[D];廣東工業(yè)大學;2013年
2 劉霞;小菜蛾對氯蟲苯甲酰胺的抗性機制及溴氰蟲酰胺對小菜蛾生物學特性的影響[D];山東農(nóng)業(yè)大學;2016年
3 郭磊;小菜蛾對氯蟲苯甲酰胺抗性的分子機制[D];中國農(nóng)業(yè)大學;2014年
相關(guān)碩士學位論文 前10條
1 陳其超;新型氯蟲苯甲酰胺衍生物的合成、活性和靶點研究[D];山東大學;2015年
2 黃莉;氯蟲苯甲酰胺對二化螟亞致死效應的研究[D];揚州大學;2015年
3 王;;小菜蛾對氯蟲苯甲酰胺抗性快速形成的生物學及行為學機制[D];杭州師范大學;2016年
4 劉偉;2,3-二氯吡啶的合成工藝研究[D];河北工業(yè)大學;2015年
5 李清;氯蟲苯甲酰胺等藥劑對雙季水稻主要捕食性天敵影響研究[D];湖南農(nóng)業(yè)大學;2010年
6 鄧放;氯蟲苯甲酰胺對菜青蟲田間種群控制效果及作用機理[D];湖南農(nóng)業(yè)大學;2014年
7 宮維;小菜蛾對氯蟲苯甲酰胺的抗性風險評估及分子機理[D];山東農(nóng)業(yè)大學;2013年
8 譚曉偉;小菜蛾對氯蟲苯甲酰胺的抗性風險及亞致死效應研究[D];中國農(nóng)業(yè)科學院;2012年
9 劉澤良;氯蟲苯甲酰胺低劑量興奮效應及其對擬環(huán)紋豹蛛的影響研究[D];湖北大學;2014年
10 李佳;甜菜夜蛾對氯蟲苯甲酰胺的抗性風險評估及其抗性機制[D];南京農(nóng)業(yè)大學;2013年
,本文編號:2198944
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2198944.html