AM真菌提高枸杞耐鹽性的機(jī)制研究
[Abstract]:In this study, the diversity of arbuscular mycorrhizas (AM) fungi in Ningxia saline soil was investigated, and the main soil factors affecting the changes of AM Fungi Community in saline soil were identified. The relationships among AM fungi community, soil factors and plant species were expounded. Physiological and biochemical mechanisms of AM fungi inoculation on improving salt tolerance of Lycium barbarum were studied. The potential of AM fungi inoculation as biofertilizer to improve the growth and quality of Lycium barbarum under salt stress was evaluated. The main conclusions are as follows: 1. The diversity of AM Fungi Community in summer saline soil was identified in the rhizosphere saline soil of Lycium barbarum L. and Elaeagnus angustifolia L. in Ningxia. 33 species of AM fungi belonging to 10 genera and 7 families were identified. Among them, the number of AM fungi in Glomeraceae was the largest, including 13 species, Aclospora and Glomusau were the richest. Septoglomus constrictum was the highest abundant species, and S. constrictum and Funneliformis coronatum were the common species, indicating that there was a high diversity of AM fungal communities in Ningxia saline soil. The Shannon, Simpson and Evenness indices of AM Fungi Community in Lycium barbarum rhizosphere were also significantly higher than those in Elaeagnus angustifolia L. in 12 species of Elaeagnus angustifolia, suggesting that host could affect the structure of AM fungi community. 2. The effect of soil factors on the diversity of AM Fungi Community in Ningxia saline soil was negatively correlated with the diversity index of AM fungi, suggesting that salt Diversity. However, soil fertility indices (available potassium, available phosphorus, available nitrogen and total phosphorus) were positively correlated with AM fungi diversity, indicating that soil fertility increased AM fungi diversity. Soil pH was positively correlated with spore abundance, indicating that alkaline soil was conducive to AM fungi sporulation. The results showed that soil factors could significantly affect the structure of AM fungi community. 3. The effects of AM fungi on hormone regulation and growth of Lycium barbarum L. Under salt stress, IAA content in leaves and roots of Lycium barbarum inoculated with Glomus versiform increased by 59.0% and 39.1%, respectively, and ABA content in leaves increased by 13.8%. Covariance analysis showed that G. versiform directly affected the contents of IAA and ABA in Lycium barbarum. By participating in the regulation of these two hormones, the biomass of Lycium barbarum was increased by 1.75 times, the total absorption and active absorption area of root system were increased by 2.17 and 2.66 times, respectively. 3.6%, 57.8% and 86.6% showed that the growth of Lycium barbarum inoculated with G.versiform was better. Therefore, G.versiform significantly alleviated the inhibition of salt stress on the growth of Lycium barbarum, especially promoted the growth and development of Lycium barum roots, and ensured the absorption of water and nutrients of Lycium barum. 4. AM was true under salt stress. The effects of G. versiform on chlorophyll, photosynthesis and chlorophyll fluorescence of Lycium barbarum L. were studied under salt stress. The results showed that G. versiform increased the chlorophyll content of Lycium barbarum L. by 25.7% under non-salt stress. The chlorophyll content of Lycium barum L. was not affected by salt stress, indicating that Lycium barbarum L. had stronger chlorophyll content. The photosynthesis and chlorophyll fluorescence of Lycium barbarum L. were significantly decreased under salt stress. However, the photosynthetic rate and transpiration rate of Lycium barbarum L. inoculated with G. versiform at 100 mM increased by 56.0% and 28.7% respectively, and the intercellular CO2 concentration decreased by 9.0%. Electron transfer efficiency (PSII), photochemical quenching coefficient (qP) and non-photochemical quenching coefficient (qN) of Lycium barbarum L. were significantly higher than those of the control, indicating that G. versiform could improve the photosynthetic capture ability of Lycium barbarum L. and help it distribute energy reasonably, so as to ensure the photosynthesis of Lycium barum L. under salt stress and protect the photosynthetic system from photooxidation damage.5. Effects of AM fungi on antioxidant and osmotic regulation of Lycium barbarum L. Under salt stress, the effects of G. versiform on the activities of antioxidant enzymes, osmotic regulators and water potential of Lycium barum L. were studied. The results showed that the activities of superoxide dismutase (SOD) and peroxidase (POD) of Lycium barum L. inoculated with AM fungi increased by 11.0% and 7.6% respectively. Catalase (CAT) activity increased by 2.85 times under 100 mM salt stress, indicating that G. versiform could increase the activity of antioxidant enzymes and reduce the damage of membrane system in Lycium barbarum. At the same time, G. versiform increased the content of soluble sugar (32.3%) and reducing sugar (33.6%) and decreased the content of starch (23.8%) in Lycium barbarum, suggesting that G. versiform could promote the hydrolysis of starch in Lycium barum barbarum. The above results showed that G. versiform could increase the activity of antioxidant enzymes and osmotic regulation of Lycium barbarum L. under salt stress. 6. The effect of AM fungi on ultrastructure of Lycium barbarum L. leaves under salt stress was evaluated in this study. The chloroplast thylakoids and stroma lamellae were separated and destroyed seriously by salt stress. Compared with the control, the isolation degree of mesophyll cytoplasmic wall of Lycium barbarum inoculated with G. versiform was lighter, the chloroplast was relatively intact and accumulated less oil droplets, and the matrix and thylakoids were intact and orderly. The results showed that G. versiform effectively protected the structure of Lycium barbarum leaf cells under salt stress. 7. Effects of AM fungi inoculation on the nutritional components of Lycium barbarum leaves under salt stress. Rhizophagus irregularis was inoculated in Lycium barbarum under salt stress. The effects of R. irregularis on the nutritional components of Lycium barbarum leaves were determined. Irregularis increased the regeneration rate of Lycium barbarum buds by 79.0% and 113.0% under non-stress and salt stress, respectively. Compared with the control, inoculation with R. irregularis increased the rutin content of Lycium barbarum leaves by 96.1% and 77.5%, and the acid polysaccharide content of Lycium barum leaves by 66.7% and 103.1% respectively under salt stress. The results showed that R. irregularis could significantly increase the regeneration rate of Lycium barbarum buds and the nutritional components of Lycium barbarum leaves under salt stress.
【學(xué)位授予單位】:西北農(nóng)林科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S567.19
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 郭忠勇;田長彥;胡明芳;呂昭智;;不同形態(tài)磷肥對棉花生長和AM真菌接種效應(yīng)的影響[J];干旱區(qū)研究;2008年02期
2 李晉榮;洪堅平;郝鮮俊;陳芬;;不同磷水平下接種AM真菌對礦區(qū)玉米生長的影響[J];山西農(nóng)業(yè)科學(xué);2013年08期
3 王紅新;李富平;國巧真;郭紹義;;AM真菌生長發(fā)育影響因素及其對植物作用的研究[J];土壤肥料;2006年01期
4 楊瑞紅;劉潤進(jìn);劉成連;王永章;李培環(huán);原永兵;;AM真菌和水楊酸對草莓耐鹽性的影響[J];中國農(nóng)業(yè)科學(xué);2009年05期
5 李桂貞;楊富裕;張德罡;周青平;代艷;韓志林;;青海燕麥根區(qū)AM真菌的空間分布研究[J];西北農(nóng)業(yè)學(xué)報;2008年05期
6 薛會英;張永青;彭岳林;;藏北草原主要植物AM真菌的初步研究[J];山地學(xué)報;2007年03期
7 郭紹霞;陳丹明;劉潤進(jìn);;鹽水脅迫下接種AM真菌對牡丹幼苗抗氧化酶活性的影響[J];園藝學(xué)報;2010年11期
8 姜國金;許蘭珍;楊曉紅;王容春;朱邦松;;瀘州荔枝果園AM真菌菌根及孢子數(shù)量調(diào)查與分析[J];安徽農(nóng)業(yè)科學(xué);2007年22期
9 馬亞斌;李偉;徐萌;姜準(zhǔn);郭紹霞;;AM真菌對鹽脅迫下百合生長和光合作用的影響[J];青島農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版);2014年03期
10 郭紹霞;張玉剛;尹新路;;AM真菌對牡丹實生苗礦質(zhì)營養(yǎng)和生長的影響[J];青島農(nóng)業(yè)大學(xué)學(xué)報(自然科學(xué)版);2010年03期
相關(guān)會議論文 前10條
1 馮永坤;朱寧;程陽;王曉靜;馮固;;AM真菌對不同磷效率基因型玉米生長和磷營養(yǎng)的效應(yīng)[A];第五次全國土壤生物和生物化學(xué)學(xué)術(shù)研討會論文集[C];2009年
2 李晉榮;洪堅平;郝鮮俊;陳芬;張麗;;不同磷水平下接種AM真菌對礦區(qū)玉米光合性能的影響[A];面向未來的土壤科學(xué)(中冊)——中國土壤學(xué)會第十二次全國會員代表大會暨第九屆海峽兩岸土壤肥料學(xué)術(shù)交流研討會論文集[C];2012年
3 劉冰江;李敏;劉潤進(jìn);;AM真菌對棉花根內(nèi)防御性酶活性的影響[A];中國植物病理學(xué)第七屆青年學(xué)術(shù)討論會論文集[C];2005年
4 張霽;郭蘭萍;劉大會;黃璐琦;;干旱脅迫下AM真菌對蒼術(shù)幼苗生長及保護(hù)酶活性的影響[A];2010年全國中藥學(xué)術(shù)研討會論文集[C];2010年
5 劉春卯;賀學(xué)禮;徐浩博;張淑容;牛凱;;蒙古沙冬青AM真菌物種多樣性研究[A];生態(tài)文明建設(shè)中的植物學(xué):現(xiàn)在與未來——中國植物學(xué)會第十五屆會員代表大會暨八十周年學(xué)術(shù)年會論文集——第2分會場:植物生態(tài)與環(huán)境保護(hù)[C];2013年
6 劉冰江;李敏;劉潤進(jìn);;AM真菌對棉花生長和黃萎病的影響[A];中國植物病理學(xué)會2006年學(xué)術(shù)年會論文集[C];2006年
7 趙萌;李敏;王淼焱;劉潤進(jìn);;AM真菌克服作物連作障礙的潛力[A];山東農(nóng)業(yè)微生物技術(shù)學(xué)術(shù)研討會論文集[C];2006年
8 石兆勇;李敏;劉潤進(jìn);;栽培基質(zhì)對AM真菌和西瓜生長發(fā)育的影響[A];第九屆全國土壤微生物學(xué)術(shù)討論會論文摘要[C];2001年
9 劉翠花;張紅鋒;李菊;大次卓嘎;鐘國輝;張澈;;AM真菌對青稞抗旱性影響的機(jī)理研究[A];2006中國科協(xié)年會農(nóng)業(yè)分會場論文專集[C];2006年
10 劉翠花;張紅鋒;李菊;大次卓嘎;鐘國輝;張澈;;AM真菌對青稞抗旱性影響的機(jī)理研究[A];提高全民科學(xué)素質(zhì)、建設(shè)創(chuàng)新型國家——2006中國科協(xié)年會論文集[C];2006年
相關(guān)博士學(xué)位論文 前6條
1 劉雪琴;納米ZnO/AM真菌對玉米的生物效應(yīng)及作用機(jī)理研究[D];西南大學(xué);2015年
2 王同智;不同復(fù)墾方式下露天礦排土場AM真菌、宿主植物群落及修復(fù)作用的研究[D];內(nèi)蒙古大學(xué);2014年
3 劉洪光;AM真菌提高枸杞耐鹽性的機(jī)制研究[D];西北農(nóng)林科技大學(xué);2016年
4 孫學(xué)廣;AM共生機(jī)制研究:AM真菌與植物根系的識別及AM功能相關(guān)基因[D];西北農(nóng)林科技大學(xué);2014年
5 朱曉琴;AM真菌對刺槐光合固碳和能源性狀的影響機(jī)制研究[D];西北農(nóng)林科技大學(xué);2014年
6 王倡憲;AM真菌對設(shè)施黃瓜幼苗生長及抗枯萎病能力研究[D];中國農(nóng)業(yè)大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 王曉乾;蒙古沙冬青AM真菌物種多樣性演替規(guī)律研究[D];河北大學(xué);2015年
2 喬亞君;AM真菌與施硒量對丹參幼苗生長及品質(zhì)的影響[D];河北大學(xué);2015年
3 于美迪;AM真菌與苜蓿共生對土壤中阿特拉津降解特性的研究[D];黑龍江大學(xué);2015年
4 孫玉芳;鹽堿脅迫下AM真菌對沙棗苗木生長的影響[D];黑龍江大學(xué);2015年
5 牛麗純;沙棗根瘤微生物及根系內(nèi)AM真菌多樣性研究[D];黑龍江大學(xué);2014年
6 王健;AM真菌與紫穗槐形成叢枝菌根過程中差異蛋白質(zhì)圖譜庫的構(gòu)建[D];黑龍江大學(xué);2012年
7 李媛媛;不同紫花苜;蛐蛯M真菌的響應(yīng)以及AM真菌擴(kuò)繁的研究[D];蘭州大學(xué);2013年
8 林雙雙;AM真菌調(diào)節(jié)紫花苜蓿對重金屬元素Cd的吸收和分配策略[D];蘭州大學(xué);2013年
9 孔祥仕;抑制消減雜交技術(shù)篩選AM真菌與紫穗槐共生相關(guān)基因[D];黑龍江大學(xué);2013年
10 羅佳佳;施肥對垂穗披堿草根系內(nèi)AM真菌群落功能的影響[D];蘭州大學(xué);2016年
,本文編號:2184403
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2184403.html