miRNA160通過(guò)SIARF10對(duì)番茄葉片失水和果實(shí)發(fā)育的調(diào)控作用
[Abstract]:Auxin response factor (ARF), as a class of transcription factors, participates in many physiological and biochemical processes in plants by regulating downstream gene expression, and the transcriptional level of ARF is regulated by miRNA. Based on the research basis of previous and subject groups, the target gene SIARF10 of tomato miRNA160, SIARF16, SIARF17, miRN, is preliminarily clarified. A167 can regulate slARF6 and slARF8. in this study to further clarify the function of miRNA160 and miRNA167 regulating target gene AREs to participate in tomato growth and development. Using 35S:: mSIARF10-6 (the form of anti miRNA160 degradation), the effect of SIARF10 on the rate of water loss in tomato leaves was investigated, and the direct influence of ARF10 on the gas was determined. The water conductivity of tomato leaves was increased by pore development and aquaporin expression, and the effect of ARFs/miRNAs on the development of fruit peel in the early stage of tomato fruit development was studied by using DGT and gib-3 mutants. The cell division and expansion of ARFs regulated by miRNA160 and miRNA167 was preliminarily discussed in the regulation of auxin and gibberellin. The transgenic plants and T1 generation of the overexpression of miRNA160 have been obtained. It is found that the ARFs regulated by miRNA160 plays an important role in regulating the leaves of tomato. These studies will lay a foundation for further clarifying the biological regulation mechanism of ARF/miRNA and the mechanism of the growth and development of plants by auxin. The main results are as follows: 1. the use of mS The phenotypic analysis of IARF10 overexpressed transgenic tomato (anti miR160 degradation) leaves showed that the leaves were significantly narrower (long / wide), the stomata became larger, and the stomatal density became smaller. Usually narrow leaves had smaller water loss rates. However, compared with the wild type, the leaves of the 35S:mSIARF10-6 leaves showed greater leaf loss rate. During the process, 35S:mSIARF10-6 accumulated a higher ABA content, but the sensitivity of the exogenous ABA to the stomata was significantly higher than that in the wild type. However, the further analysis showed that the actual loss rate of the 35S:mSIARF10-6 leaves was different from that of the calculated water vapor loss depending on the pore water vapor loss. This indicates that there are other ways to influence the water loss of the 35S:mSIARF10-6 leaves. One step using aquaporins (AQPs) inhibitor HgCl2 treatment confirmed that 35S:mSIARF10-6 had higher AQP activity and had higher hydraulic conductivity. The above results showed that the increase of 35S:mSIARF10-6 water loss rate was the result of the co action of stomata and aquaporin activity,.2. based on RNA-sequencing showed that there were 5 AQP in 35S:mSIARF10-6. Family genes, 14 ABA synthesis and signal transduction related genes and 3 stomatal development related genes have significant changes, in which SIABI5 has ABA dependent transcription factor activity. The up-regulated AQP promoter analysis showed that the up regulation of AQP gene promoter contained ABRE or AuxRE promoter components. The promoter activity analysis test of the most significant three genes (SITIP1-1, SIPIP2; 4 and SINIP-type like) found that SIPIP2 containing AuxRE elements, the promoter region of 4 and SINIP-like, and SIPIP2, 4 and SITIP1 containing ABRE elements; 1 promoter region significantly enhanced the activity of the GUS enzyme activity in the 35S:mSIARF10-6 transgenic material and the yeast single The hybridization test confirmed that SIARF10 could be combined with the AuxRE promoter element in the AQP gene promoter, and the yeast single hybridization was carried out with the transcriptional factor SIAB15, which was significantly increased in the 35S:mSIARF10-6 expression, and proved to be associated with the ABRE promoter element in the AQP gene promoter. Therefore, the enhancement of 35S: mSIARF10-6 AQP expression may be on ARF10 and ABI5. However, through the transient expression of SIARF10 silencing and SIABI5 overexpression, it was found that down-regulation of SIARF10 could reduce the water loss rate of tomato leaves, and the overexpression of SIABI5 was significantly down regulated by 6h before water stress treatment. Therefore, the high water loss rate of 35S:mSIARF10-6 was not due to the effect of SIABI5, but the result of SIARF10's direct effect. It is shown that, although SIARF10 reduces water loss by regulating stomatal opening by increasing ABA synthesis and signal response, SIARF10 accelerates water loss by affecting the stomatal development and aquaporin activity. Therefore, miR160 regulated SIARF10 is of great significance for maintaining the water balance of leaves.3. using exogenous IAA to spray tomato GA deficiency. The loss of mutant (gib-3) and exogenous GA spraying tomato IAA signal pathway blocked mutant (DGT) fruit material. The anatomical results showed that IAA resulted in the thickening of the peel and the increase of the number of cells in the pericarp, while GA did not increase the number of cell layers. The RT-PCR study found that IAA treated gib-3 mutants as SIARF6, SIARF8, SIARF10, and expression levels decreased significantly. The expression level of SIARF6, SIARF8, SIARF10 and SIARF16 in DGT mutants was significantly up-regulated by GA, and the expression level of miRNAs decreased significantly in DGT mutants. These results showed that the expression of SIARF6, SIARF8, SIARF10, and SIARF6 was negatively correlated with the number of peel cell layers in the early stage of tomato fruit development. The fruit peel analysis of mSIARF10-6 transgenic tomato plants showed that over expression of mSIARF10 resulted in a significant decrease in the number of cell layers in fruit peels. The above results showed that miRNAs and the target gene ARFs mediated by GA and IAA may participate in the proliferation of fruit cells in the early stage of tomato fruit development.4. using Gateway technology to successfully construct miRNA160 super. The expression vector. The tomato miRNA160 precursor was joined with the strong promoter pB7WG2D, 1 carrier. The tomato transgenic plants were successfully obtained through the optimized tomato genetic transformation system. The transgenic tomato plants of the T1 generation were successfully verified by the fluorescence detection, molecular and protein level and other identification methods. The phenotype of 35S:: SImiR160 transgenic plants: the widen leaf width, the decrease of leaf cleft and the increase of leaf area. It suggests that miR160 plays an important role in regulating the development of tomato leaves. It provides a good test for the research of the mechanism of miRNA160 for the growth and development of tomato.
【學(xué)位授予單位】:沈陽(yáng)農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類(lèi)號(hào)】:S641.2
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 余宏章;;番茄葉片上卷的原因及對(duì)策[J];農(nóng)村百事通;2013年10期
2 陸家訓(xùn);移植基因培育新番茄[J];農(nóng)業(yè)科技通訊;1994年08期
3 吳正景,高文,魏秉培,蘇維;氮素對(duì)番茄葉片生理活性的作用研究[J];河南科技大學(xué)學(xué)報(bào)(農(nóng)學(xué)版);2003年04期
4 陳卓;張笑千;張冠宇;韓東海;曲英華;;番茄葉片幾何特征的提取與分析[J];北方園藝;2010年15期
5 趙文杰;陳靠山;張鵬英;;發(fā)育對(duì)番茄葉片防御相關(guān)酶活性的影響[J];中國(guó)農(nóng)學(xué)通報(bào);2011年16期
6 陳凱利;李建明;賀會(huì)強(qiáng);韓瑞鋒;孫三杰;姚勇哲;;水分對(duì)溫室盆栽番茄葉片光響應(yīng)特性的影響[J];西北農(nóng)林科技大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
7 李彥,羅盛國(guó),劉元英,陳友,趙久明,姜伯文;硒對(duì)番茄葉片中谷胱甘肽過(guò)氧化物酶活性及產(chǎn)量和品質(zhì)的影響[J];山東農(nóng)業(yè)科學(xué);1999年06期
8 徐幼平;徐秋芳;蔡新忠;;適于雙向電泳分析的番茄葉片總蛋白提取方法的優(yōu)化[J];浙江農(nóng)業(yè)學(xué)報(bào);2007年02期
9 李淼;李天來(lái);;短期晝間亞高溫對(duì)番茄葉片抗氧化酶活性的影響[J];沈陽(yáng)農(nóng)業(yè)大學(xué)學(xué)報(bào);2009年02期
10 宋軍蘭;李東升;;番茄葉片厚度變化規(guī)律的比較解剖分析[J];浙江農(nóng)業(yè)學(xué)報(bào);2009年06期
相關(guān)會(huì)議論文 前10條
1 高洪燕;毛罕平;張曉東;周瑩;;番茄葉片氮素反射光譜及高光譜圖像的研究[A];中國(guó)農(nóng)業(yè)工程學(xué)會(huì)2011年學(xué)術(shù)年會(huì)論文集[C];2011年
2 王冬梅;康立功;許向陽(yáng);李景富;;熱脅迫對(duì)番茄葉片主要生理生化指標(biāo)的影響[A];中國(guó)園藝學(xué)會(huì)第七屆青年學(xué)術(shù)討論會(huì)論文集[C];2006年
3 王丹;須暉;李天來(lái);尹川;;連續(xù)變光對(duì)不同品種番茄葉片細(xì)胞膜系統(tǒng)的影響[A];農(nóng)業(yè)工程科技創(chuàng)新與建設(shè)現(xiàn)代農(nóng)業(yè)——2005年中國(guó)農(nóng)業(yè)工程學(xué)會(huì)學(xué)術(shù)年會(huì)論文集第五分冊(cè)[C];2005年
4 劉玉鳳;李天來(lái);齊明芳;;夜間不同低溫處理及恢復(fù)對(duì)番茄葉片活性氧代謝的影響[A];中國(guó)園藝學(xué)會(huì)2010年學(xué)術(shù)年會(huì)論文摘要集[C];2010年
5 金志鳳;景元書(shū);申雙和;李軍;姚益平;;溫室小氣候與番茄葉片光合速率日進(jìn)程分析[A];第二屆長(zhǎng)三角氣象科技論壇論文集[C];2005年
6 劉玉鳳;齊明芳;李天來(lái);;番茄葉片葉綠體中水—水循環(huán)對(duì)低夜溫響應(yīng)的鈣素緩解效應(yīng)[A];中國(guó)園藝學(xué)會(huì)2012年學(xué)術(shù)年會(huì)論文摘要集[C];2012年
7 金志鳳;景元書(shū);李永秀;申雙和;;日光溫室內(nèi)主要?dú)夂蛏鷳B(tài)因子和番茄葉片凈光合速率的梯度分布特征[A];全國(guó)農(nóng)業(yè)氣象與生態(tài)環(huán)境學(xué)術(shù)年會(huì)論文集[C];2006年
8 金志鳳;袁德輝;馮濤;景元書(shū);張寒;;溫室小氣候?qū)Ψ讶~片凈光合速率日進(jìn)程分析[A];中國(guó)農(nóng)學(xué)會(huì)農(nóng)業(yè)氣象分會(huì)2006年學(xué)術(shù)年會(huì)論文集[C];2006年
9 張國(guó)顯;劉玉鳳;李天來(lái);;外源鈣緩解夜間低溫引起的番茄葉片光抑制的研究[A];中國(guó)園藝學(xué)會(huì)2013年學(xué)術(shù)年會(huì)論文摘要集[C];2013年
10 任婧祺;崔娜;;番茄葉片蛋白質(zhì)組分析的雙向電泳技術(shù)體系的建立和優(yōu)化[A];中國(guó)園藝學(xué)會(huì)2010年學(xué)術(shù)年會(huì)論文摘要集[C];2010年
相關(guān)重要報(bào)紙文章 前8條
1 湖北省孝感市農(nóng)業(yè)局高級(jí)農(nóng)藝師 余宏章;番茄葉片為何上卷[N];河南科技報(bào);2010年
2 劉春香 王來(lái)芳;番茄葉片發(fā)黃 尋因施治不慌[N];河北農(nóng)民報(bào);2006年
3 呂良才;棚室番茄葉片為啥常卷縮[N];山西科技報(bào);2001年
4 保定定州市農(nóng)牧局 王虎;棚室番茄卷葉為哪般[N];河北農(nóng)民報(bào);2009年
5 定州市農(nóng)牧局 王虎;一棚室番茄卷葉為哪般[N];河北科技報(bào);2009年
6 云淡;番茄不上色的原因及對(duì)策[N];新疆科技報(bào)(漢);2008年
7 勇;番茄的三種怪現(xiàn)象[N];云南科技報(bào);2004年
8 河北省農(nóng)科院植保所 孫茜 徐文亭;雨后暴晴警惕番茄遭高溫燙傷[N];河北科技報(bào);2013年
相關(guān)博士學(xué)位論文 前10條
1 張國(guó)顯;外源鈣緩解低夜溫導(dǎo)致番茄葉片光抑制的機(jī)理[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2015年
2 曹逼力;硅緩解番茄(Solanum Lycopersicum L.)干旱脅迫的機(jī)理[D];山東農(nóng)業(yè)大學(xué);2015年
3 王劍鋒;基質(zhì)培番茄的鉀素營(yíng)養(yǎng)生理響應(yīng)與快速檢測(cè)技術(shù)研究[D];中國(guó)農(nóng)業(yè)大學(xué);2016年
4 王俊玲;番茄光合的光譜效應(yīng)研究[D];河北農(nóng)業(yè)大學(xué);2015年
5 劉欣;miRNA160通過(guò)SIARF10對(duì)番茄葉片失水和果實(shí)發(fā)育的調(diào)控作用[D];沈陽(yáng)農(nóng)業(yè)大學(xué);2016年
6 王彥杰;番茄葉片葉黃素部分缺失下不同光保護(hù)途徑對(duì)干旱脅迫的響應(yīng)[D];浙江大學(xué);2007年
7 劉志勇;熱脅迫下番茄多胺代謝與基因差異表達(dá)分析[D];中國(guó)農(nóng)業(yè)科學(xué)院;2007年
8 賀忠群;叢枝菌根真菌(AMF)提高番茄耐鹽性機(jī)制的研究[D];西北農(nóng)林科技大學(xué);2007年
9 王華森;番茄葉片GDP-甘露糖焦磷酸化酶基因(GMPase)的cDNA克隆及功能分析[D];山東農(nóng)業(yè)大學(xué);2007年
10 王麗燕;番茄GDP-L-半乳糖磷酸酶(GGP)基因的克隆、表達(dá)和功能分析[D];山東農(nóng)業(yè)大學(xué);2012年
相關(guān)碩士學(xué)位論文 前10條
1 于世欣;不同地區(qū)土壤養(yǎng)分含量與番茄葉片養(yǎng)分含量、產(chǎn)量的關(guān)系[D];山東農(nóng)業(yè)大學(xué);2015年
2 劉紅玉;基于交互作用的番茄葉片氮磷鉀含量的多元信息檢測(cè)方法[D];江蘇大學(xué);2016年
3 鄒強(qiáng);基于高光譜圖像技術(shù)的番茄葉片和植株抗氧化酶系統(tǒng)活性測(cè)定研究[D];浙江大學(xué);2012年
4 劉婷婷;模擬酸雨脅迫下番茄葉片的基因差異表達(dá)研究[D];福建農(nóng)林大學(xué);2010年
5 邊江;番茄葉片動(dòng)態(tài)光合的光響應(yīng)特性研究[D];河北農(nóng)業(yè)大學(xué);2011年
6 周天恩;意大利觀賞番茄引種栽培研究[D];福建農(nóng)林大學(xué);2007年
7 畢珂嘉;番茄葉片揮發(fā)性物質(zhì)的鑒定及相關(guān)基因表達(dá)分析和番茄核心種質(zhì)果實(shí)代謝組學(xué)分析[D];華中農(nóng)業(yè)大學(xué);2014年
8 費(fèi)玉娟;江蘇省設(shè)施番茄寡照氣象災(zāi)害預(yù)警技術(shù)的研究[D];南京信息工程大學(xué);2012年
9 王曉;番茄LeGSH1基因的克隆及在耐鎘性中的功能分析[D];山東農(nóng)業(yè)大學(xué);2013年
10 劉陽(yáng);番茄MBF1轉(zhuǎn)錄輔激活因子基因的克隆載體的構(gòu)建及轉(zhuǎn)化番茄[D];重慶大學(xué);2007年
,本文編號(hào):2165099
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2165099.html