長(zhǎng)白山林區(qū)林場(chǎng)級(jí)尺度景觀格局演化與模擬
本文選題:景觀格局 + 景觀尺度 ; 參考:《東北林業(yè)大學(xué)》2016年博士論文
【摘要】:長(zhǎng)白山林區(qū)是我國(guó)過(guò)伐林分布較多的地區(qū)之一,過(guò)去由于粗放經(jīng)營(yíng),森林結(jié)構(gòu)被破壞、功能逐漸退化。如何保護(hù)、經(jīng)營(yíng)天然林資源和恢復(fù)良好的林分結(jié)構(gòu)己成為我國(guó)林業(yè)發(fā)展所迫切需要解決的問(wèn)題。基于此,本文基于景觀生態(tài)學(xué)基礎(chǔ)理論和近自然林經(jīng)營(yíng)理念,選取典型區(qū)域吉林汪清林業(yè)局塔子溝林場(chǎng)(吉林省首次實(shí)施撫育間伐作業(yè)試點(diǎn))為研究對(duì)象。借助于RS和GIS技術(shù),以研究區(qū)1997年和2009年兩期Landsat TM影像為主要數(shù)據(jù)源,輔助大量非遙感信息,基于景觀格局尺度特征、景觀格局尺度效應(yīng)、景觀格局空間結(jié)構(gòu)特征、均勻度理論和景觀格局的地形分布特征等,定量分析并揭示該區(qū)域12年間在景觀尺度上的格局動(dòng)態(tài)變化特征、時(shí)空演變規(guī)律、多尺度動(dòng)態(tài)演變及其空間自相關(guān)特征。在此基礎(chǔ)上,定量分析地形因素對(duì)森林植被空間格局影響狀況,基于生物量地形因子趨勢(shì)面定量分析,以其揭示海拔、坡度和坡向等各地形因子及其組合狀況對(duì)其空間分布影響。基于CA-Markov模型和終極狀態(tài)方程,模擬預(yù)測(cè)未來(lái)景觀格局的發(fā)展趨勢(shì)及其終極狀態(tài)格局,基于森林景觀自然度評(píng)價(jià)基礎(chǔ)上,完成不同景觀自然度森林經(jīng)營(yíng)模式研究和生態(tài)設(shè)計(jì),從類型層次和景觀尺度提出天然林景觀合理配置模式,基于(?)原則和均勻度理論,完成區(qū)域森林經(jīng)營(yíng)撫育間伐設(shè)計(jì)和空間格局控制,在形成示范區(qū)的基礎(chǔ)上,從景觀水平上研究森林景觀格局分布狀態(tài)演變和解決森林生態(tài)經(jīng)營(yíng)規(guī)劃技術(shù)和方法,以其為該區(qū)域森林景觀生態(tài)過(guò)程模擬模型與森林經(jīng)營(yíng)決策模型的研究提供綜合的、系統(tǒng)的方法和思路。本文主要取得以下的結(jié)論:(1)基于區(qū)域一級(jí)景觀類型分析可知,總體景觀格局以有林地景觀為主,荒山荒地、沼澤地和居民用地等景觀斑塊分散于有林地中,各景觀類型面積分布不均衡,斑塊數(shù)目差異較為明顯。森林景觀在研究區(qū)域中占據(jù)絕對(duì)的優(yōu)勢(shì)地位,兩期的面積比例分別為93.47%和95.39%,控制著研究區(qū)域的景觀整體結(jié)構(gòu)、功能和動(dòng)態(tài)過(guò)程;人為景觀和半自然景觀明顯處于支配地位。研究區(qū)森林類型海拔梯度分布為從河谷地低海拔榆樹(shù)林和楊樺林到高海拔紅松云冷杉林,地帶性森林植被--闊葉紅松林所形成的森林生態(tài)系統(tǒng)類型,主導(dǎo)著本地區(qū)森林景觀格局的動(dòng)態(tài)演變。(2)基于兩期二級(jí)景觀森林類型分析可知:研究區(qū)域是以闊葉混交林為主體,兩期的面積比例分別為74.94%和82.45%,均以闊葉混交林景觀、蒙古櫟林景觀和針闊混交林景觀構(gòu)成研究區(qū)域景觀基質(zhì)。12年間,該區(qū)域優(yōu)勢(shì)種演替順序?yàn)橄蠕h種(榆樹(shù)、楊樺、落葉松)ì伴生種(水胡黃椴)→頂級(jí)種(云冷紅-色柞),處于演替序列低級(jí)階段、高級(jí)階段和演替后期的楊樺林、闊葉紅松林和針闊混交林面積減少,處于演替中期的闊葉混交林景觀的面積增加,次生林區(qū)特征較為明顯,景觀異質(zhì)性高,近自然程度較低,景觀空間格局現(xiàn)狀易受某些環(huán)境因子和干擾狀況的綜合控制。(3)1997-2009年,研究區(qū)域的聚集度和蔓延度指數(shù)增加,分別由88.4128和97.7300增加到91.7402和98.3815,分離度指數(shù)由1.144減少到1.1001,表明區(qū)域景觀破碎化程度減緩,景觀類型的分布由分散趨向集中交錯(cuò),連通性增強(qiáng),利于景觀功能的整體發(fā)揮,但景觀的優(yōu)勢(shì)度增加,景觀的空間異質(zhì)性和多樣性減少,且景觀優(yōu)勢(shì)度及多樣性兩個(gè)指數(shù)呈現(xiàn)出一定負(fù)相關(guān),表明該區(qū)域各景觀類型所占比例差異增大。(4)1997年的Moran's I系數(shù)為-0.11,2009年為0.42,基于General G-statistic的計(jì)算可知,1997年的Z Score的數(shù)值為0.92,而2009年為2.06;1997年基于均勻度理論計(jì)算的均勻度指數(shù)為0.3207,2009年為0.2883。基于Moran's I和均勻地理論結(jié)果相同,兩結(jié)果都表明12年間研究區(qū)域的景觀格局呈現(xiàn)出由隨機(jī)格局到集聚格局的發(fā)展趨勢(shì),天然次生林的群落結(jié)構(gòu)呈現(xiàn)出相對(duì)不穩(wěn)定且2009年呈現(xiàn)出全局空間自相關(guān)在高值空間聚集(H-H聚集),但整體景觀的優(yōu)勢(shì)度增加,單一優(yōu)勢(shì)景觀類型對(duì)區(qū)域整體景觀的控制作用增強(qiáng)。(5)基于ArcGIS 9.3的Geostatistical Analyst的分析可知,1997年SHDI最大和最小值分別為2.0463和0.2544,2009年分別為1.9722和0.2418,且SHDI的優(yōu)勢(shì)區(qū)域集中分布于該研究區(qū)域的中部地帶,呈現(xiàn)西南向東北走向的條帶狀,并基于地統(tǒng)計(jì)學(xué)軟件GS+計(jì)算實(shí)驗(yàn)區(qū)半方差函數(shù)和理論擬合模型進(jìn)行分析,結(jié)果表明該尺度下森林景觀多樣性與空間地理位置具有中等的空間相關(guān)性和明顯地域結(jié)構(gòu)性,基于IDW和Kring插值獲取不同尺度下森林景觀多樣性指數(shù)的空間分布圖。(6)在ArcGIS的支持下,基于DEM與優(yōu)勢(shì)樹(shù)種的空間疊加,精確地描述各景觀要素的優(yōu)勢(shì)樹(shù)種在空間格局上的分布、大小、地理位置或相對(duì)位置,并完成基于生物量地形因子趨勢(shì)面的定量分析。高海拔和低海拔區(qū)域,兩期的生物量都隨著坡向的改變而呈現(xiàn)一定規(guī)律的變化,在高海拔、坡度大的區(qū)域生物量較大;坡度主要通過(guò)聯(lián)合坡向?qū)Ω纳屏⒌厮謼l件的效應(yīng)發(fā)揮出對(duì)景觀要素的生物量空間分異進(jìn)行作用。局部坡度因子對(duì)生物量的影響沒(méi)有成為整個(gè)森林生物量空間分布趨勢(shì)的重要因子,僅影響到局部區(qū)域生物量波動(dòng)起伏。(7)基于CA-Markov的終極狀態(tài)概率計(jì)算可知,按照當(dāng)前經(jīng)營(yíng)措施不發(fā)生改變的情況下,研究區(qū)域最終的狀態(tài)是:闊葉混交林、針闊混交林和榆樹(shù)林的面積增加,其他景觀類型的面積都呈現(xiàn)減小,闊葉混交林的面積比例達(dá)到了59%,在研究區(qū)域中占據(jù)絕對(duì)的優(yōu)勢(shì)地位,頂級(jí)森林景觀的云冷杉針葉混交林和闊葉紅松林的面積比例僅為3.9%,預(yù)測(cè)最終的景觀格局現(xiàn)狀將不利于整個(gè)研究區(qū)域景觀的整體穩(wěn)定性發(fā)展,也不符合其森林景觀經(jīng)營(yíng)目標(biāo)。(8)基于群落連續(xù)帶指數(shù)(CI)來(lái)定量確定群落的演替狀態(tài),以近自然林業(yè)理論和潛在天然植被生態(tài)修理念為指導(dǎo),通過(guò)對(duì)森林景觀生境、森林景觀的演替情況、優(yōu)勢(shì)樹(shù)種、立地條件森林景觀的經(jīng)營(yíng)目的定量研究,首次提出景觀自然度的概念,并劃分為頂級(jí)景觀自然度、高級(jí)景觀自然度、中間過(guò)渡性景觀自然度和初級(jí)景觀自然度,基于森林景觀自然度評(píng)價(jià)的基礎(chǔ)上,以林場(chǎng)尺度為示范區(qū),首次以景觀自然度區(qū)域內(nèi)的森林景觀類型為經(jīng)營(yíng)管理單元,從類型層次和景觀尺度提出經(jīng)營(yíng)目標(biāo)、目標(biāo)結(jié)構(gòu)以及結(jié)構(gòu)調(diào)整等主要內(nèi)容的經(jīng)營(yíng)模式,為長(zhǎng)白山林區(qū)森林經(jīng)營(yíng)提供理論依據(jù)和技術(shù)支撐。(9)在ArcGIS 9.3的支持下,利用VBA程序提取2009年三個(gè)大小為30m×30m演替初期、演替中期、演替亞頂級(jí)各階段樣地樹(shù)種點(diǎn)相對(duì)坐標(biāo),并建立GIS專題數(shù)據(jù)庫(kù),基于C#和均勻度理論的支持下,完成樣地樹(shù)點(diǎn)最近點(diǎn)距離、獨(dú)占體總面積及均勻度指數(shù)的定量計(jì)算,結(jié)果表明三個(gè)樣地均勻度分別為0.331、0.288、0.275;按照(?)原則,選擇性的去掉一些點(diǎn)后,重新計(jì)算三個(gè)樣地的均勻度分別為0.463、0.346、0.290,得出按照(?)原則去點(diǎn)后的分布來(lái)生成樹(shù)木,可以使林分格局達(dá)到優(yōu)化。
[Abstract]:Changbai Mountain forest area is one of the areas with large distribution of over logged forests in China. In the past, the forest structure was destroyed and the function gradually deteriorated because of extensive management. How to protect, manage natural forest resources and restore good forest structure has become an urgent problem to be solved in the development of forestry in China. Based on this, this paper is based on the basic theory of landscape ecology. And the concept of near natural forest management, selected typical area Jilin Wangqing Forestry Bureau tower Zi Gou Forest Farm (Jilin province for the first time the practice of thinning operation pilot) as the research object. With the help of RS and GIS technology, the study area in 1997 and 2009 Landsat TM images as the main data source, auxiliary a large number of non remote sensing information, based on the landscape pattern scale characteristics, The scale effect of landscape pattern, the spatial structure feature of landscape pattern, the theory of evenness and the topography of landscape pattern, and so on. The quantitative analysis and Revelation of the dynamic change characteristics of the pattern, the temporal and spatial evolution law, the dynamic evolution of the multi scale and the spatial autocorrelation characteristics of the region in the 12 years, based on this, quantitative analysis of the terrain The influence of factors on the spatial pattern of forest vegetation is based on the quantitative analysis of the trend surface of biomass topographic factors to reveal the influence of the topographic factors and their combination conditions on the spatial distribution of altitude, slope and slope direction. Based on the CA-Markov model and the ultimate state equation, the development trend of the future landscape pattern and its ultimate state lattice are simulated and predicted. On the basis of forest landscape naturalness evaluation, the research and ecological design of forest management models with different landscape nature are completed. The rational allocation model of natural forest landscape is put forward from type and landscape scale. Based on (?) principle and uniformity theory, the design of regional forest tending and space pattern control is completed and the demonstration is formed. On the basis of the area, the paper studies the evolution of forest landscape pattern distribution and the technology and methods to solve the forest ecological management planning from the landscape level, and provides comprehensive, systematic methods and ideas for the study of the forest landscape ecological process simulation model and the forest management decision model. The main conclusions are as follows: (1) The analysis of landscape types at the regional level shows that the overall landscape pattern is dominated by woodland landscape, barren hills and wasteland, swamps and residential land and other landscape patches are scattered in the woodland, the area distribution of each landscape type is uneven and the number of patches is more distinct. The forest landscape occupies an absolute dominant position in the study area and the area of the two phases The ratios of 93.47% and 95.39% respectively control the overall landscape structure, function and dynamic process of the study area; the artificial landscape and the semi natural landscape are obviously dominant. The distribution of forest types in the study area is from the low altitudes of the valley and Yang Hualin to the high altitude red pine Cloud Fir Forest and the zonal forest vegetation -- broadleaf. The forest ecological system type formed by the red pine forest dominates the dynamic evolution of the forest landscape pattern in the region. (2) based on the analysis of the landscape forest types of two stages and two stages, the study area is based on the broad leaved mixed forest as the main body, the area ratio of the two periods is 74.94% and 82.45% respectively, both in the broad leaf mixed forest landscape, the Mongolia oak forest landscape and the coniferous and broad-leaved mixed forest landscape. During the period of.12, the succession sequence of the dominant species was the pioneer species (ELM, Yang Hua, Larix gmelinii) and the top species (cloud cold red tussah), at the low stage of succession sequence, the advanced stage and the late succession of Yang Hualin, the area of broad-leaved red pine forest and the coniferous and broad-leaved mixed forest decreased. The area of broad-leaved mixed forest in the middle of succession is increased, the secondary forest area is more obvious, the landscape heterogeneity is high, the near nature is low, the landscape spatial pattern is easily controlled by some environmental factors and interference conditions. (3) 1997-2009 years, the aggregation degree and spread index of the study area are increased from 88.4128 and 97.7300, respectively. Adding to 91.7402 and 98.3815, the index of separation degree decreased from 1.144 to 1.1001, indicating that the degree of landscape fragmentation slowed down, the distribution of landscape types was concentrated and interlaced, and the connectivity was enhanced, which was beneficial to the overall display of landscape function, but the dominance of landscape was increased, the spatial heterogeneity and diversity of landscape were reduced, and the landscape dominance was more than that of the landscape. The two indices showed a certain negative correlation, indicating that the proportion of the landscape types in the region increased. (4) the Moran's I coefficient in 1997 was 0.42 for -0.112009 years. Based on the calculation of General G-statistic, the value of Z Score in 1997 was 0.92 and 2009 was 2.06; and the evenness index based on the uniformity theory in 1997 was 2.06. For 0.32072009 years, the results of 0.2883. based on Moran's I and uniform theory were the same. The two results showed that the landscape pattern of the study area showed a trend from random pattern to cluster pattern in 12 years. The community structure of natural secondary forest was relatively unstable and the global spatial autocorrelation was gathered in high value space in 2009 (H- H aggregation), but the dominance of the overall landscape increased, and the single dominant landscape type enhanced the overall landscape control. (5) based on the analysis of the Geostatistical Analyst of ArcGIS 9.3, the maximum and minimum values of SHDI in 1997 were 1.9722 and 0.2418 respectively, respectively, and the dominant regions of SHDI were concentrated in the research area. In the middle area of the region, we present the strip in the north-east direction of the southwest, and analyze the semi variance function and the theoretical fitting model of the experimentation area based on the geostatistics software GS+. The results show that the forest landscape diversity and the spatial geographic location are of medium spatial correlation and obvious regional structure, based on IDW and Kring. Spatial distribution map of forest landscape diversity index under different scales was obtained. (6) under the support of ArcGIS, based on the spatial superposition of DEM and dominant species, the spatial distribution, size, location or relative position of dominant tree species in various landscape elements were accurately described, and the trend surface based on biomass topographic factors was completed. In high altitudes and low altitudes, the biomass of two phases is changed with the change of slope direction. In high altitude, the biomass of the area with large slope is larger. The slope degree mainly plays a role in the spatial differentiation of the landscape element by the effect of the combined slope to improve the soil water condition. The effect of factors on biomass did not become an important factor in the spatial distribution trend of the whole forest biomass, only affecting the fluctuation of local biomass. (7) according to the ultimate state probability calculation based on CA-Markov, the final state of the study area is the broadleaf mixed forest and the broad-leaved forest. The area of the mixed forest and the other landscape is decreased, the area ratio of the mixed broadleaf mixed forest has reached 59%, and it occupies an absolute dominant position in the study area. The proportion of the mixed forest and the broadleaf red pine forest in the top forest landscape is only 3.9%, and the final situation of the landscape pattern will not be predicted. The whole stability development of the whole research area landscape is not consistent with its forest landscape management goal. (8) based on the community continuous belt index (CI) to determine the succession state of the community, the succession of the forest landscape and the forest landscape, and the advantages of the succession of the forest landscape and the forest landscape, are based on the theory of the natural forest and the ecological repair of the potential natural vegetation. The concept of landscape naturalness is first proposed for the first time, and the concept of landscape naturalness is proposed for the first time. It is divided into top landscape nature, high landscape naturalness, intermediate transition landscape naturalness and primary landscape nature. Based on forest landscape naturalness evaluation, the forest farm scale is the demonstration area for the first time. The forest landscape type in the natural area is the management unit, the management target, the target structure and the structural adjustment from the type level and landscape scale, provide the theoretical basis and technical support for the forest management in Changbai Mountain forest area. (9) with the support of ArcGIS 9.3, the use of VBA program to extract three large 2009 In the early stage of 30m * 30m succession, the relative coordinates of the tree species at the top stages of the substage were replaced, and the GIS thematic database was established. Based on the support of the theory of C# and uniformity, the quantitative calculation of the nearest point distance, the total area and the evenness index of the sample plots was completed, and the results showed that the three plots of land uniformity were 0.331,0.288, respectively. 0.275, according to the (?) principle, after the selective removal of some points, the uniformity of the three plots is calculated to be 0.463,0.346,0.290, and the distribution of the trees following the (?) principle is obtained to optimize the stand pattern.
【學(xué)位授予單位】:東北林業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S718.5
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 蔣桂娟;鄭小賢;;吉林省汪清林業(yè)局云冷杉天然林結(jié)構(gòu)特征研究[J];北京林業(yè)大學(xué)學(xué)報(bào);2012年04期
2 何東進(jìn);游巍斌;洪偉;巫麗蕓;詹仕華;游惠明;;近10年景觀生態(tài)學(xué)模型研究進(jìn)展[J];西南林業(yè)大學(xué)學(xué)報(bào);2012年01期
3 張寶雷;胡文秋;馮朝陽(yáng);鄭智榮;呂世海;;低溫雪災(zāi)對(duì)莽山保護(hù)區(qū)植被NPP影響的遙感評(píng)價(jià)[J];水土保持研究;2011年04期
4 李暉;李志英;劉大邦;易娜;楊樹(shù)華;李國(guó)彥;;基于元胞自動(dòng)機(jī)的月亮山景區(qū)景觀格局動(dòng)態(tài)模擬[J];安徽農(nóng)業(yè)科學(xué);2011年03期
5 曾偉生;唐守正;;國(guó)外立木生物量模型研究現(xiàn)狀與展望[J];世界林業(yè)研究;2010年04期
6 周秋文;蘇維詞;陳書(shū)卿;;基于景觀指數(shù)和馬爾科夫模型的銅梁縣土地利用分析[J];長(zhǎng)江流域資源與環(huán)境;2010年07期
7 曹銀貴;周偉;王靜;袁春;;三峽庫(kù)區(qū)30a間土地利用景觀特征的粒度效應(yīng)[J];農(nóng)業(yè)工程學(xué)報(bào);2010年06期
8 湯潔;汪雪格;李昭陽(yáng);毛子龍;韓維崢;徐小明;;基于CA-Markov模型的吉林省西部土地利用景觀格局變化趨勢(shì)預(yù)測(cè)[J];吉林大學(xué)學(xué)報(bào)(地球科學(xué)版);2010年02期
9 吳楠;高吉喜;蘇德畢力格;羅遵蘭;李岱青;;長(zhǎng)江上游不同地形條件下的土地利用/覆蓋變化[J];長(zhǎng)江流域資源與環(huán)境;2010年03期
10 徐延達(dá);傅伯杰;呂一河;;基于模型的景觀格局與生態(tài)過(guò)程研究[J];生態(tài)學(xué)報(bào);2010年01期
相關(guān)博士學(xué)位論文 前10條
1 王瑗;流域尺度景觀格局時(shí)空演變與生態(tài)系統(tǒng)健康評(píng)價(jià)研究[D];東北師范大學(xué);2012年
2 喬志和;長(zhǎng)白山自然保護(hù)區(qū)景觀格局演化與模擬[D];東北師范大學(xué);2012年
3 寧楊翠;長(zhǎng)白山楊樺次生林健康評(píng)價(jià)與經(jīng)營(yíng)模式[D];北京林業(yè)大學(xué);2011年
4 楊德生;重慶市渝北區(qū)地表景觀格局時(shí)空演化及生態(tài)環(huán)境響應(yīng)[D];成都理工大學(xué);2011年
5 龔直文;長(zhǎng)白山退化云冷杉林演替動(dòng)態(tài)及恢復(fù)研究[D];北京林業(yè)大學(xué);2009年
6 郭紅;長(zhǎng)白山地區(qū)森林景觀格局與生態(tài)規(guī)劃研究[D];東北林業(yè)大學(xué);2007年
7 鄧向瑞;北京山區(qū)森林景觀格局及其尺度效應(yīng)研究[D];北京林業(yè)大學(xué);2007年
8 龔文峰;基于RS和GIS松潘地區(qū)天然林景觀動(dòng)態(tài)過(guò)程與分類研究[D];東北林業(yè)大學(xué);2007年
9 舒清態(tài);東北過(guò)伐林區(qū)森林景觀生態(tài)采伐規(guī)劃理論與技術(shù)研究[D];北京林業(yè)大學(xué);2006年
10 王斌;火地塘林區(qū)景觀格局動(dòng)態(tài)及其生態(tài)效益研究[D];西北農(nóng)林科技大學(xué);2006年
相關(guān)碩士學(xué)位論文 前5條
1 張茜;基于CA-Markov模型的杭州灣南岸濕地景觀格局動(dòng)態(tài)模擬與預(yù)測(cè)[D];浙江大學(xué);2013年
2 鄭帷婕;基于GIS的林草交錯(cuò)帶景觀格局變化及影響因素研究[D];四川大學(xué);2007年
3 賴長(zhǎng)鴻;基于GIS的川西道孚林區(qū)森林景觀格局研究[D];四川農(nóng)業(yè)大學(xué);2006年
4 王妍;基于DEM的地形信息提取與景觀空間格局分析[D];西南大學(xué);2006年
5 張志;基于GIS的金溝嶺林場(chǎng)森林景觀格局研究[D];北京林業(yè)大學(xué);2004年
,本文編號(hào):2090793
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2090793.html