天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

水氮互作對固定道壟作春小麥生長、產(chǎn)量和水氮利用的影響

發(fā)布時(shí)間:2018-06-10 14:10

  本文選題:固定道壟作溝灌 + 春小麥; 參考:《甘肅農(nóng)業(yè)大學(xué)》2016年博士論文


【摘要】:水、氮是制約甘肅河西灌區(qū)春小麥生長發(fā)育的兩個(gè)因子。隨著農(nóng)業(yè)水資源的日益虧缺和盲目增施氮肥造成面源污染范圍的擴(kuò)大,引進(jìn)并推廣新的節(jié)水耕作方式及氮肥減量化是實(shí)現(xiàn)小麥高產(chǎn)高效的關(guān)鍵途徑,對實(shí)現(xiàn)河西灌區(qū)農(nóng)業(yè)的可持續(xù)發(fā)展意義非凡。為此本試驗(yàn)采用固定道壟作栽培,通過2015年春小麥不同水氮處理田間試驗(yàn),以低水1200(W1)、中水2400(W2)、高水3600 m3·hm-2(W3)為主處理,0(N0)、低氮90(N1)、中氮180(N2)、高氮270 kg·hm-2(N3)為副處理,采用裂區(qū)設(shè)計(jì),對不同水氮處理下春小麥地上部與根系生長、產(chǎn)量、耗水規(guī)律、土壤剖面硝態(tài)氮分布、植株氮素積累及轉(zhuǎn)運(yùn)規(guī)律進(jìn)行了研究,以提高春小麥籽粒產(chǎn)量、水分利用效率和氮肥利用率為目標(biāo),確定了水、氮優(yōu)化投入量,以期實(shí)現(xiàn)小麥高產(chǎn)高效。主要研究結(jié)果如下:1、水氮互作顯著影響小麥生長。適宜的水氮供應(yīng)量對小麥葉面積指數(shù)、籽粒干物質(zhì)累積及分配存在顯著的互作優(yōu)勢,水氮供應(yīng)量過高或者過低,互作優(yōu)勢減弱。相同施氮量下,干物質(zhì)、葉綠素SPAD值、光合速率、蒸騰速率及氣孔導(dǎo)度隨灌水量增加而增大(W3W2W1),旗葉葉片胞間CO2隨灌水量增加而增大(W1W2W3),籽粒干物質(zhì)分配比例隨灌水量增加先增加后減小(W2W3W1)。小麥生長對施氮量的響應(yīng)取決于灌水量。W1處理下,SPAD值隨施氮量增加表現(xiàn)為先增大后減小(N2N3N1N0),W2處理下,拔節(jié)至灌漿期,SPAD值隨施氮量增加先增加后不變(N2、N3N1N0),成熟期SPAD值隨施氮量增加而增加(N3N2N1N0);W3處理下,SPAD值隨施氮量增加而增大(N3N2N1N0)。W1、W2處理下隨施氮量增加光合速率、蒸騰速率及氣孔導(dǎo)度均先增大后減小(N2N3N1N0),W3處理下光合速率、蒸騰速率及氣孔導(dǎo)度隨著施氮量的增加而增加(N3N2N1N0)。各處理旗葉葉片胞間CO2隨著施氮量的增加而減少。灌水與施氮均能增加小麥營養(yǎng)器官的干物質(zhì),W2N2處理籽粒干物質(zhì)分配比例最高。2、灌水量及施氮量在一定閾值,水、氮對春小麥根系生長(根干重密度、根長密度、根表面積及根系活力)呈正效應(yīng),過高水氮投入量對春小麥根系生長呈報(bào)酬遞減效應(yīng)。施氮與灌水顯著影響根系生長,表現(xiàn)為灌水氮肥水氮互作。根系特征參數(shù)隨灌水量的增加先增加后減小(W2W3W1),根系特征參數(shù)對氮肥的響應(yīng)取決于灌水量,W1處理下,根系特征參數(shù)N1處理下最大;W2處理下,根系特征參數(shù)N2處理下最大;W3處理下,根系特征參數(shù)N3處理下最大,適宜增加灌水量與施肥量(W2N2)有益于根系特征參數(shù)(根干重密度、根長密度、根表面積及根系活力)的提高;85%以上的小麥根系分布于0~40 cm土層,90%以上的根干重密度與85%以上的根長密度集中在0~40cm土層,W2N2處理能增加40~60cm小麥根系分布比例、提高根系活力、顯著提高春小麥根長密度及根表面積邊行優(yōu)勢,促進(jìn)根系對下層及側(cè)向水分和養(yǎng)分的截獲和吸收;小麥根長密度垂直分布滿足以e為底數(shù)的指數(shù)函數(shù)y=Ae-Bx;通過對小麥根系特征參數(shù)的主成分分析表明,以W2N2處理促根效果最好。3、灌水量及施氮量對小麥籽粒氮素積累具有互作效應(yīng),適宜的施氮量及灌水量對小麥籽粒氮素積累量呈正效應(yīng),過量灌水、施氮對小麥籽粒氮素積累量呈負(fù)效應(yīng)。W2N2處理能夠增加小麥花前氮素轉(zhuǎn)運(yùn)量及花后氮素同化量,提高小麥籽粒氮素的分配比例,進(jìn)而可以獲得較高的籽粒氮素積累量、氮素收獲指數(shù)及氮肥利用率。春小麥?zhǔn)斋@土壤硝態(tài)氮含量的垂直分布在表層(0~20cm)最高,隨土層深度的增加先減少后增加再減少。隨施氮量增加各土層硝態(tài)氮含量及累積量均有所增加,隨著灌水量的增加0~120cm土層硝態(tài)氮含量及累積量減小,其中0~80cm土層硝態(tài)氮含量及累積量隨著灌水量增加而減小,80~120cm土層硝態(tài)氮含量及累積量隨著灌水量的增加而增加。4、相同施氮量下,小麥籽粒產(chǎn)量隨著灌水量的增加而先增加后不變(W3、W2W1),W3與W2處理差異不顯著;W1處理下,春小麥籽粒產(chǎn)量隨施氮量增加先增加后減小(N2N1N3N0),W2處理下,籽粒產(chǎn)量隨施氮量增加先增加后不變(N3、N2N1N0),W3處理下,籽粒產(chǎn)量隨施氮量增加先增加后減小(N2N3N1N0)。籽粒產(chǎn)量邊行及次邊行的邊行優(yōu)勢隨灌水量、施氮量的增加先增加后減小,W2N2處理下,小麥單株籽粒產(chǎn)量邊行及次邊行的邊行優(yōu)勢最大。W2N2處理下水分利用效率最高(13.71kg.hm-2.mm-1);產(chǎn)量與0~20 cm土層根長密度、根系活力呈顯著拋物線回歸關(guān)系,與20~60 cm土層根長密度、根系活力呈顯著線性正回歸關(guān)系,與60~80 cm土層根長密度、根系活力無相關(guān)性。產(chǎn)量與0~40 cm土層根干重密度呈顯著拋物線回歸關(guān)系,與40~60 cm土層根干重密度呈顯著線性正回歸關(guān)系,與60~80 cm土層根干重密度無相關(guān)性。從節(jié)約水資源、降低過量施氮所造成的環(huán)境污染、提高作物產(chǎn)量和水氮利用效率等方面考慮,固定道壟作栽培下,施肥量與灌水量控制在N2(180 kg·hm-2)與W2(2400 m3·hm-2)條件下有利于促進(jìn)春小麥籽粒干物質(zhì)及氮素累積與分配、春小麥根系生長,減小0~120cm土層硝態(tài)氮含量及累積量,進(jìn)而提高春小麥籽粒產(chǎn)量及水氮利用效率,是河西灌區(qū)固定道壟作栽培春小麥適宜的水氮組合。
[Abstract]:Water and nitrogen are two factors restricting the growth and development of spring wheat in the Western irrigated area of Gansu. With the increasing shortage of agricultural water resources and the expansion of nitrogen fertilizer, the introduction and extension of new ways of saving water and reduction of nitrogen fertilizer are the key ways to achieve high yield and high efficiency of wheat, and the sustainable agriculture in Hexi irrigation area can be realized. In this experiment, the fixed ridge culture was used in this experiment. Through the field experiment of different water and nitrogen treatment in spring wheat in 2015, the experiment was carried out in 2015, with low water 1200 (W1), water 2400 (W2), high water 3600 m3. Hm-2 (W3), 0 (N0), low nitrogen 90 (N1), medium nitrogen 180 (N2), high nitrogen 270 kg hm-2 (N3) as a side treatment, under different water and nitrogen treatment. The growth, yield, water consumption law, distribution of nitrate nitrogen in soil profile, nitrogen accumulation and transport of plant were studied to improve the grain yield, water use efficiency and nitrogen utilization rate of spring wheat, and the optimal input of water and nitrogen was determined to achieve high yield and high efficiency of wheat. The main results are as follows: 1, The water and nitrogen interaction significantly affected the growth of wheat. The suitable water and nitrogen supply had significant mutual advantage on wheat leaf area index, dry matter accumulation and distribution of grain. The supply of water and nitrogen was too high or too low, and the mutual advantage weakened. The dry matter, chlorophyll SPAD value, photosynthesis rate, transpiration rate and stomatal conductance increased with the amount of irrigation. Adding and increasing (W3W2W1), the intercellular CO2 of flag leaves increased with the increase of irrigation amount (W1W2W3). The proportion of dry matter distribution of grain increased first and then decreased with the increase of irrigation water (W2W3W1). The response of wheat growth to nitrogen application depends on the irrigation amount.W1 treatment, SPAD value increases with nitrogen application and then decreases (N2N3N1N0), W2 treatment, jointing to jointing. During the filling period, the SPAD value increased with the increase of nitrogen application (N2, N3N1N0), and the SPAD value at maturity increased with the increase of nitrogen application (N3N2N1N0). Under W3 treatment, SPAD value increased with the increase of nitrogen application (N3N2N1N0).W1, W2 treatment increased photosynthetic rate with nitrogen application, the transpiration rate and stomatal conductance increased first and then decreased (N2N3N1N0), W3 treatment under photosynthesis. The rate, transpiration rate and stomatal conductance increased with the increase of nitrogen application (N3N2N1N0). The intercellular CO2 of the leaves of the flag leaves decreased with the increase of nitrogen application. The irrigation and nitrogen application could increase the dry matter of the wheat vegetative organs. The proportion of dry matter distribution in the W2N2 treatment was the highest.2, the irrigation amount and the amount of nitrogen applied to a certain threshold, and the water and nitrogen were small to spring. The root growth (root dry weight density, root length density, root surface area and root activity) was positive effect. High water and nitrogen input decreased the growth of root growth in spring wheat. Nitrogen application and irrigation significantly affected root growth, showing the interaction of water and nitrogen with irrigation nitrogen. The root characteristic parameter increased first and then decreased (W2W3W1), root system, and root system. The response of characteristic parameters to nitrogen fertilizer depends on the amount of irrigation. Under the treatment of W1, root characteristic parameters N1 treatment is the largest; under the W2 treatment, the root characteristic parameter N2 treatment is the largest. Under W3 treatment, the root characteristic parameter N3 treatment is the largest, suitable for increasing irrigation quantity and fertilizer amount (W2N2) is beneficial to root characteristic parameters (root dry density density, root surface density, root surface) More than 85% of wheat roots were distributed in 0~40 cm soil layer, more than 90% of root dry weight density and over 85% root length density were concentrated in 0~40cm soil layer. W2N2 treatment could increase root distribution ratio of 40~60cm wheat, increase root activity, increase root length density and root surface area edge of spring wheat, and promote root system. The intercepting and absorption of the lower and lateral water and nutrients; the vertical distribution of the wheat root long density satisfies the exponential function y=Ae-Bx with the E as the base, and the principal component analysis of the characteristic parameters of the wheat root indicates that the root effect of the wheat root is best.3, the irrigation amount and the amount of nitrogen have mutual effect on the nitrogen accumulation of the wheat seed, and the suitable amount of nitrogen application. And the amount of irrigation has a positive effect on nitrogen accumulation in wheat grain. Excessive irrigation, nitrogen application to wheat grain nitrogen accumulation is negative effect.W2N2 treatment can increase the nitrogen transport and nitrogen assimilation amount before flower, and increase the nitrogen distribution ratio of wheat grain, and then get higher grain nitrogen accumulation and nitrogen harvest index. The vertical distribution of nitrate nitrogen content in the harvested soil of spring wheat was the highest in the surface layer (0~20cm), which decreased first and then decreased with the increase of soil depth. With the increase of nitrogen application, the nitrate content and accumulation of the soil layer increased, with the increase of the amount of irrigation, the nitrate content and accumulation of 0~120cm soil layer decreased, of which 0~80cm The nitrate content and accumulation of soil layer decreased with the increase of irrigation. The content and accumulation of nitrate nitrogen and accumulation in 80~120cm soil layer increased.4 with the increase of irrigation amount. Under the same amount of nitrogen application, the grain yield of wheat increased first and then remained unchanged (W3, W2W1), and the difference between W3 and W2 treatment was not significant; under W1 treatment, the grain yield of spring wheat followed by W1 treatment. The amount of nitrogen increased first and then decreased (N2N1N3N0). Under the W2 treatment, the grain yield increased first and then remained unchanged (N3, N2N1N0). Under the W3 treatment, the grain yield increased first and then decreased with the nitrogen application (N2N3N1N0). The edge row and secondary line advantages of grain yield increased with the irrigation water, and the nitrogen application increased first and then decreased, while the W2N2 treatment was smaller. The water use efficiency was highest (13.71kg.hm-2.mm-1) under the maximum.W2N2 treatment of the grain yield and the edge row of grain yield. The yield and the root length density of 0~20 cm soil layer, root activity showed a significant parabolic regression relationship, and the root length density of 20~60 cm soil layer, root vigor showed a significant linear regression relationship with the root length density of 60~80 cm soil layer. There was no correlation between root activity and root dry density of 0~40 cm soil layer, which showed a significant linear regression relationship with the root dry weight of the soil layer. There was a significant linear regression relationship with the dry weight density of the root of 40~60 cm soil layer. There was no correlation with the dry weight density of 60~80 cm soil root. In terms of rate and so on, under the fixed ridge cultivation, under the conditions of N2 (180 kg. Hm-2) and W2 (2400 m3. Hm-2), the accumulation and distribution of dry matter and nitrogen in spring wheat grains, the growth of spring wheat roots, the decrease of nitrate nitrogen content and accumulation in the 0~120cm soil layer, and the increase of grain yield and water nitrogen benefit in spring wheat are also considered. The efficiency is a suitable combination of water and nitrogen for spring wheat cultivation in Hexi irrigation area.
【學(xué)位授予單位】:甘肅農(nóng)業(yè)大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S512.12

【參考文獻(xiàn)】

相關(guān)期刊論文 前10條

1 李若楠;武雪萍;張彥才;王麗英;陳麗莉;翟鳳芝;;節(jié)水減氮對溫室土壤硝態(tài)氮與氮素平衡的影響[J];中國農(nóng)業(yè)科學(xué);2016年04期

2 宋明丹;李正鵬;馮浩;;不同水氮水平冬小麥干物質(zhì)積累特征及產(chǎn)量效應(yīng)[J];農(nóng)業(yè)工程學(xué)報(bào);2016年02期

3 徐國偉;王賀正;尼嬌嬌;陳明燦;李友軍;;水氮耦合對鄭麥9023結(jié)實(shí)期葉片衰老及產(chǎn)量的影響[J];草業(yè)學(xué)報(bào);2015年11期

4 張偉;李魯華;呂新;;水氮耦合對滴灌春小麥根系時(shí)空分布及產(chǎn)量的影響[J];灌溉排水學(xué)報(bào);2015年11期

5 呂曉東;馬忠明;;不同耕作方式對春小麥田土壤水分過程的影響[J];核農(nóng)學(xué)報(bào);2015年11期

6 楊君林;馬忠明;張立勤;王智琦;連彩云;薛亮;;施氮量對河西綠洲灌區(qū)壟作春小麥土壤水氮?jiǎng)討B(tài)及吸收利用的影響[J];麥類作物學(xué)報(bào);2015年09期

7 吳立峰;張富倉;范軍亮;周罕覓;梁飛;高志建;;水肥耦合對棉花產(chǎn)量、收益及水分利用效率的效應(yīng)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2015年12期

8 馬忠明;張立勤;呂曉東;潘艷華;;干旱灌區(qū)固定道耕作對土壤水熱效應(yīng)及春小麥產(chǎn)量的影響[J];麥類作物學(xué)報(bào);2015年07期

9 姚寧;宋利兵;劉健;馮浩;吳淑芳;何建強(qiáng);;不同生長階段水分脅迫對旱區(qū)冬小麥生長發(fā)育和產(chǎn)量的影響[J];中國農(nóng)業(yè)科學(xué);2015年12期

10 彭亞靜;汪新穎;張麗娟;郝曉然;喬繼杰;王瑋;吉艷芝;;根層調(diào)控對小麥-玉米種植體系氮素利用及土壤硝態(tài)氮?dú)埩舻挠绊慬J];中國農(nóng)業(yè)科學(xué);2015年11期

相關(guān)博士學(xué)位論文 前2條

1 劉屹湘;小麥/玉米間作體系競爭—恢復(fù)過程的根系互作機(jī)制[D];中國農(nóng)業(yè)大學(xué);2015年

2 付秋萍;黃土高原冬小麥水氮高效利用及優(yōu)化耦合研究[D];中國科學(xué)院研究生院(教育部水土保持與生態(tài)環(huán)境研究中心);2013年

相關(guān)碩士學(xué)位論文 前7條

1 馬伯威;不同水氮模式對冬小麥產(chǎn)量形成和水氮利用效率的影響[D];河北農(nóng)業(yè)大學(xué);2015年

2 彭婷;水氮互作對滴灌春小麥群體質(zhì)量和產(chǎn)量形成的影響[D];石河子大學(xué);2014年

3 胡衛(wèi)麗;氮肥和密度對兩種穗型冬小麥莖蘗發(fā)育與物質(zhì)運(yùn)轉(zhuǎn)的調(diào)控效應(yīng)[D];河南農(nóng)業(yè)大學(xué);2014年

4 賈永紅;水肥耦合對春小麥干物質(zhì)和產(chǎn)量的影響[D];新疆農(nóng)業(yè)大學(xué);2012年

5 胡敏;小麥根系研究方法標(biāo)準(zhǔn)化與關(guān)鍵技術(shù)改良化[D];河南農(nóng)業(yè)大學(xué);2012年

6 王麗金;灌水次數(shù)和施鉀量對冬小麥群體物質(zhì)生產(chǎn)和產(chǎn)量形成的影響[D];河北農(nóng)業(yè)大學(xué);2009年

7 鄧忠;固定道耕作結(jié)合壟作溝灌對河西走廊春小麥水分利用的影響[D];甘肅農(nóng)業(yè)大學(xué);2005年

,

本文編號:2003493

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/2003493.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶d9712***提供,本站僅收錄摘要或目錄,作者需要?jiǎng)h除請E-mail郵箱bigeng88@qq.com
久久碰国产一区二区三区| 日韩一区二区三区观看| 色婷婷久久五月中文字幕| 欧美成人久久久免费播放| 国产综合一区二区三区av| 精品少妇人妻av一区二区蜜桃 | 国产不卡最新在线视频| 91偷拍裸体一区二区三区| 亚洲熟妇中文字幕五十路| 99久久国产精品成人观看| 国产亚州欧美一区二区| 色综合视频一区二区观看| 国产原创激情一区二区三区| 国产精品欧美激情在线| 青青久久亚洲婷婷中文网 | 日韩精品一区二区三区四区| 好吊日在线视频免费观看| 人妻内射精品一区二区| 午夜免费精品视频在线看| 欧美中文日韩一区久久| 自拍偷拍一区二区三区| 日韩精品区欧美在线一区| 日本免费一区二区三女| 五月综合婷婷在线伊人| 久久三级国外久久久三级| 久久少妇诱惑免费视频| 少妇人妻精品一区二区三区| 欧美一区二区黑人在线| 午夜国产精品福利在线观看| 日本办公室三级在线观看| 日本av在线不卡一区| 日韩不卡一区二区视频| 国产精品成人又粗又长又爽| 久久婷婷综合色拍亚洲| 亚洲一区二区三区av高清| 国产丝袜女优一区二区三区| 福利一区二区视频在线| 欧美一区二区三区视频区| 日韩一级免费中文字幕视频| 邻居人妻人公侵犯人妻视频| 男女激情视频在线免费观看|