四種木麻黃種源變異與選擇研究
本文選題:木麻黃 + 種源; 參考:《中國(guó)林業(yè)科學(xué)研究院》2017年博士論文
【摘要】:木麻黃(Casuarina)樹種作為我國(guó)華南沿海地區(qū)最成功的外引樹種,具有速生、防風(fēng)、固沙、抗逆及耐瘠薄等優(yōu)良特性,是重要的防護(hù)林、用材林和多用途林樹種。我國(guó)集中性對(duì)木麻黃多樹種、種源數(shù)量豐富且系統(tǒng)的種源試驗(yàn)研究報(bào)道較少,特別是含有大量原產(chǎn)地種質(zhì)材料;同時(shí)對(duì)木麻黃種源材性遺傳變異規(guī)律的研究還未見報(bào)道。本文以短枝木麻黃、粗枝木麻黃、細(xì)枝木麻黃和山地木麻黃為材料開展種源試驗(yàn),對(duì)木麻黃的生長(zhǎng)、適應(yīng)性、形質(zhì)和材質(zhì)等性狀進(jìn)行分析研究,對(duì)其遺傳參數(shù)進(jìn)行估算,揭示種源間性狀的遺傳變異規(guī)律,為木麻黃的良種選育和種質(zhì)資源的合理利用提供理論依據(jù)。主要研究結(jié)果如下:(1)造林后2a、5a和7a時(shí),4種木麻黃保存率在種源間差異顯著(P0.05)或極顯著(P0.01)。造林后2a時(shí),短枝木麻黃的種源保存率最高,山地木麻黃最低;造林后5a時(shí),粗枝木麻黃種源保存率最高,短枝木麻黃最低。臺(tái)風(fēng)過(guò)后,即7a時(shí)短枝木麻黃種源Dongfang、Ledong和Huian保存率均在80%以上,粗枝木麻黃種源13143、13139、13146和16363的保存率均在85%以上,細(xì)枝木麻黃種源15004、15574和CK的保存率均在75%以上,山地木麻黃種源18844、18846、18849和19489的保存率均在70%以上,說(shuō)明4種木麻黃抗風(fēng)性在種源間均呈現(xiàn)極顯著性差異(P0.01),其抗風(fēng)性強(qiáng)弱依次為短枝木麻黃、山地木麻黃、粗枝木麻黃和細(xì)枝木麻黃。其抗風(fēng)性種源遺傳力和遺傳異系數(shù)變幅分別為0~0.108和0.05%~4.17%,均以細(xì)枝木麻黃為最高,粗枝木麻黃最低;入選率為20%時(shí),細(xì)枝木麻黃種源抗風(fēng)性選擇增益最大(2.33%),其次為短枝木麻黃(0.75%),粗枝木麻黃和山地木麻黃則接近0。(2)3個(gè)測(cè)定年份,4種木麻黃種源間樹高、胸徑和單株材積均存在顯著(P0.05)或極顯著差異(P0.01);短枝木麻黃的5個(gè)種源(Yangxi、Dianbai、Ledong、Dongshan和18244)、粗枝木麻黃的5個(gè)種源(13139、13144、15218、15939和16361)、細(xì)枝木麻黃2個(gè)種源(14005和20477)以及山地木麻黃3個(gè)種源(19489、19490和17877)的生長(zhǎng)性狀均高于其總均值。粗枝木麻黃生長(zhǎng)性狀的種源遺傳力和遺傳變異系數(shù)在3個(gè)測(cè)定年份均明顯低于其他3種木麻黃,以7a時(shí)細(xì)枝木麻黃單株材積的種源遺傳力和遺傳變異系數(shù)為最高,分別為0.403和68.70%;除了粗枝木麻黃,其他3種木麻黃單株材積的遺傳變異系數(shù)要遠(yuǎn)遠(yuǎn)大于樹高和胸徑。造林后7a時(shí),采用20%的入選率,粗枝木麻黃生長(zhǎng)性狀的種源遺傳增益均低于0.21%,其他3種木麻黃的樹高、胸徑和單株材積的遺傳增益變幅分別為1.28%~6.59%、0.92%~12.63%和1.93%~39.86%。造林后7a時(shí),短枝木麻黃的樹高最大,其次為山地木麻黃、粗枝木麻黃,細(xì)枝木麻黃最小;胸徑和單株材積則以短枝木麻黃為最大,粗枝木麻黃最小。(3)短枝木麻黃種源間側(cè)枝粗細(xì)(TPB)、側(cè)枝分枝角(APB)、側(cè)枝長(zhǎng)度(LPB)、綠色小枝長(zhǎng)度(LDB)、主干分叉習(xí)性(AP)及主干通直度(SFS)的差異達(dá)到顯著性水平,其種源遺傳力和遺傳變異系數(shù)范圍分別為0.004~0.242和0.48%~5.79%,當(dāng)入選率為20%時(shí),其上述形質(zhì)性狀的遺傳增益范圍為0.01%~3.72%;粗枝木麻黃種源間LDB和SFS的差異達(dá)到顯著性水平,其種源遺傳力和遺傳變異系數(shù)范圍分別為0.042~0.283和2.72%~5.69%,當(dāng)入選率為20%時(shí),其上述形質(zhì)性狀的遺傳增益范圍為0.68%~5.13%;細(xì)枝木麻黃種源間側(cè)枝密度(DPB)、TPB、APB和SFS的差異達(dá)到顯著性水平,其種源遺傳力和遺傳變異系數(shù)范圍分別0.021~0.247和2.01%~3.49%,當(dāng)入選率為20%時(shí),其上述形質(zhì)性狀的遺傳增益范圍為0.25%~2.03%;山地木麻黃種源間TPB、APB、LDB、AP及SFS的差異達(dá)到顯著性水平,其種源遺傳力和遺傳變異系數(shù)范圍分別0.007~0.088和0.93%~5.56%,當(dāng)入選率為20%時(shí),其上述形質(zhì)性狀的遺傳增益范圍為0.07%~2.45%。(4)造林后7a時(shí),木材密度(BD)、纖維長(zhǎng)度(FL)和纖維長(zhǎng)寬比(LTW)在4種木麻黃種源間均存在顯著性差異,纖維寬度(FW)僅在短枝木麻黃種源間存在顯著差異。短枝木麻黃5個(gè)種源(Maoming、Dongfang、18015、18244和18122)和山地木麻黃1個(gè)種源(19490)木材密度均在0.70 g?cm-3以上,粗枝木麻黃4個(gè)種源(15932、15938、15941和19242)和細(xì)枝木麻黃1個(gè)種源(14005)的木材密度在0.60 g?cm-3以上;1個(gè)短枝木麻黃種源(18298)、1個(gè)粗枝木麻黃種源(CK)、2個(gè)細(xì)枝木麻黃種源(14005、20477)和4個(gè)山地木麻黃種源(18849、17877、19239和19238)的纖維長(zhǎng)度在0.85 mm以上。4種木麻黃木材密度、纖維長(zhǎng)度和纖維長(zhǎng)寬比的種源遺傳力變幅分別為0.155~0.519、0.143~0.504和0.094~0.489,其遺傳變異系數(shù)范圍分別為2.82%~10.16%、4.67%~10.64%和3.90%~10.94%,種源遺傳力和遺傳變異系數(shù)均以細(xì)枝木麻黃為最大。入選率為20%時(shí),短枝木麻黃、粗枝木麻黃和山地木麻黃的木材密度、纖維長(zhǎng)度和纖維長(zhǎng)寬比的種源遺傳增益大多在2%以下,僅山地木麻黃木材密度的遺傳增益接近5%,而細(xì)枝木麻黃材性的遺傳增益均在5%以上。(5)3個(gè)測(cè)定年份,4種木麻黃種源樹高、胸徑及單株材積等3個(gè)生長(zhǎng)性狀間,表型和遺傳相關(guān)均達(dá)到極顯著正相關(guān)(P0.01),表明生長(zhǎng)性狀相互間關(guān)系緊密,可以用于早期預(yù)測(cè)?癸L(fēng)性與形質(zhì)、材質(zhì)形狀間的相關(guān)性表明,粗枝木麻黃抗風(fēng)性與所有形質(zhì)、材質(zhì)形狀間的遺傳相關(guān)不顯著;短枝木麻黃的RES與TPB、AP、BD間呈顯著遺傳正相關(guān)(P0.01),與APB間極顯著遺傳負(fù)相關(guān)(P0.01),在抗風(fēng)性選擇時(shí),重點(diǎn)關(guān)注側(cè)枝粗細(xì)、主干分叉位點(diǎn)、木材密度及分枝角等性狀;細(xì)枝木麻黃的RES與SFS、BD、FL間為顯著的正表型和遺傳相關(guān)(P0.05-0.01),在抗風(fēng)性選擇時(shí),重點(diǎn)關(guān)注主干通直度、木材密度大、纖維長(zhǎng)度等性狀;山地木麻黃的RES與SFS、FL間為顯著的正表型和遺傳相關(guān)(P0.05-0.01),在抗風(fēng)性選擇時(shí),重點(diǎn)關(guān)注主干通直度高和纖維長(zhǎng)度等性狀。生長(zhǎng)與形質(zhì)、材質(zhì)形狀間的相關(guān)性表明,短枝木麻黃和細(xì)枝木麻黃生長(zhǎng)性狀與FL間呈極顯著遺傳正相關(guān)(P0.01),與LTW間無(wú)顯著相關(guān)(P≥0.05),在短枝木麻黃和細(xì)枝木麻黃的材性選擇過(guò)程中可以對(duì)生長(zhǎng)性狀和LTW分開選擇,長(zhǎng)纖維的選擇可以考慮速生性種源。(6)選用樹高H7(X1)、胸徑D7(X2)、抗風(fēng)性RES(X3)、側(cè)枝粗細(xì)TPB(X4)、主干通直度SFS(X5)、木材密度BD(X6)、纖維長(zhǎng)度FL(X7)、纖維寬度FW(X8)、纖維長(zhǎng)寬比LTW(X9)這9個(gè)性狀構(gòu)建選擇指數(shù)方程。以等權(quán)法指數(shù)方程進(jìn)行選擇,短枝木麻黃優(yōu)良種源為Dongshan、Lingao、Ledong和18127;粗枝木麻黃優(yōu)良種源為13141、13987、13142和15939;細(xì)枝木麻黃優(yōu)良種源為20477和15574;山地木麻黃優(yōu)良種源為17877、19490、19489和18849。以強(qiáng)調(diào)生長(zhǎng)性狀指數(shù)方程進(jìn)行選擇,短枝木麻黃優(yōu)良種源為Dongshan、Lingao、Ledong和18127;粗枝木麻黃優(yōu)良種源為13141、13987、13142和15939;細(xì)枝木麻黃優(yōu)良種源為14005和20477;山地木麻黃優(yōu)良種源為19490、19489、17877和18950。以強(qiáng)調(diào)材質(zhì)性狀指數(shù)方程進(jìn)行選擇,短枝木麻黃優(yōu)良種源為18269、Dongshan、Lingao和Huian;粗枝木麻黃優(yōu)良種源為13141、13987、13142和15939;細(xì)枝木麻黃優(yōu)良種源為20477和13519;山地木麻黃優(yōu)良種源為17877、19490、19489和18849。
[Abstract]:Casuarina (Casuarina) tree is the most successful tree species in the coastal area of Southern China. It has excellent characteristics such as fast growth, wind proof, sand fixation, resistance and barren resistance. It is an important protective forest, timber forest and multipurpose forest species. The study on the genetic variation of the origin of the origin of the yellow seeds has not been reported. In this paper, the species of Casuarina ephedra, the Casuarina equisetifolia, the Casuarina equisetifolia and the mountain Casuarina are tested. The growth, adaptability, quality and material of Casuarina equisetifolia are analyzed and studied. The parameters were estimated to reveal the genetic variation of interprovenance traits and provide theoretical basis for breeding and rational utilization of germplasm resources of Casuarina equisetifolia. The main results are as follows: (1) when 2a, 5A and 7a after afforestation, the 4 species of Casuarina equisetifolia have significant difference (P0.05) or extremely significant (P0.01). The species of Casuarina ephedra at 2A after afforestation. The preservation rate of source was the highest and Sanchi Kiasahuang was the lowest. The preservation rate of the source of Casuarina was the highest and the Casuarina ephedra was the lowest at 5A after afforestation. The preservation rate of Ledong and Huian was above 80% after the typhoon, and the preservation rate of Ledong and Huian was above 85%, and the preservation rate of the source 131431313913146 and 16363 of the crude Casuarina equisetifolia were more than 85%. The preservation rate of source 1500415574 and CK is above 75%, and the preservation rate of Sanchi Kiasahuang source 188441884618849 and 19489 is above 70%. It shows that the wind resistance of 4 species of Casuarina equisetifolia has significant difference between species (P0.01). The resistance to wind is in the order of short branch Casuarina, Casuarina equisetifolia, roughing Casuarina and Casuarina. The variation of genetic force and genetic variation coefficient were 0~0.108 and 0.05%~4.17% respectively, which were the highest in Casuarina equisetifolia and the lowest in roughwood ephedra. When the entry rate was 20%, the selection gain of the provenance was the largest (2.33%), the second was ephedra Ephedra (0.75%), and the Casuarina equisetifolia and the mountain Casuarina equisetifolia were close to 0. (2) 3 Determination years, 4. There are significant (P0.05) or extremely significant difference (P0.01) between the trees of the yellow seed and the tree volume, 5 sources (Yangxi, Dianbai, Ledong, Dongshan and 18244), 5 provenances (13139131441521815939 and 16361), 2 source (14005 and 20477) of Casuarina, and 3 species of Casuarina equisetifolia. The growth traits of (1948919490 and 17877) were higher than that of the total. The source heritability and genetic variation coefficient of the growth traits of the Casuarina equisetifolia were significantly lower than those of the other 3 species of Casuarina. The number of seed heritability and genetic variation of the single tree volume of Casuarina equisetifolia at 7a was the highest, 0.403 and 68.70%, respectively, except for the coarse branches. The genetic variation coefficient of Casuarina equisetifolia, the genetic variation coefficient of the individual volume of the other 3 species of Casuarina equisetifolia is far greater than the tree height and the breast diameter. The genetic gain of the growth traits of the growth traits of the Casuarina equisetifolia is less than 0.21%, the other 3 species of Casuarina equisetifolia are higher than 0.21%, and the genetic gain of the diameter and the individual volume of the 3 species of Casuarina equisetifolia is 1.28%~6.59%, 0.92%~12.63%, respectively, 0.92%~12.63% The tree height of Casuarina equisetifolia was the highest, followed by Casuarina Ephedra in mountain area, followed by Casuarina ephedra, roughing wood ephedra, and twigs ephedra, while the diameter and volume of DBH and single tree volume were the largest and the roughage Casuarina was the smallest. (3) TPB, APB, LPB, green branch length, and branch length (APB). Degree (LDB), the difference of trunk bifurcation habit (AP) and trunk straightness (SFS) reached a significant level. The heritability and genetic variation coefficient range of its provenance were 0.004~0.242 and 0.48%~5.79% respectively. When the rate of admission was 20%, the genetic gain of the above morphic traits was 0.01%~3.72%, and the difference of LDB and SFS among the root of the tree species was significant. The genetic and genetic variation coefficients of their provenances were 0.042~0.283 and 2.72%~5.69% respectively. When the rate of admission was 20%, the genetic gain of the above morphic traits was 0.68%~5.13%; the difference in the inter source side branch density (DPB), TPB, APB and SFS reached a significant level, and its provenance heritability and genetic variation coefficient model were in the range of 0.68%~5.13%. 0.021~0.247 and 2.01%~3.49% respectively, when the rate of admission was 20%, the genetic gain of the above morphic traits was 0.25%~2.03%, and the difference of TPB, APB, LDB, AP and SFS between the yellow seeds of mountain Casuarina and LDB, AP and SFS reached a significant level, and the genetic and genetic variation coefficients of the species were 0.007~0.088 and 0.93%~5.56% respectively. When the rate of selection was 20%, it was mentioned above. The genetic gain of the shape and quality traits was 0.07%~2.45%. (4) after the afforestation of 7a, the wood density (BD), fiber length (FL) and fiber length width ratio (LTW) were significantly different among the 4 species of Casuarina, and the fiber width (FW) was only significant between the yellow seeds of the short branched Casuarina and 5 species of Ephedra sinica (Maoming, Dongfang, 1801518244 and 18122). The density of 1 sources (19490) of the mountain Casuarina (19490) is above 0.70 G? Cm-3, and the wood density of 4 species (159321593815941 and 19242) and 1 species of Casuarina equisetifolia (14005) are more than 0.60 G? Cm-3; 1 short branched Casuarina provenances (18298), 1 source of Casuarina Ephedra (CK), and 2 species of Casuarina equisetifolia (1400520477) and The fiber length of 4 montane Casuarina species (188491787719239 and 19238) is more than 0.85 mm, and the density of.4 species of Casuarina equisetifolia, fiber length and fiber length width ratio are 0.155~0.519,0.143~0.504 and 0.094~0.489, respectively, and the genetic variation coefficients are 2.82%~10.16%, 4.67%~10.64% and 3.90%~10.94%, respectively. The coefficient of transmission and genetic variation was the largest of Casuarina equisetifolia. When the rate of entry was 20%, the wood density, fiber length and fiber length and width ratio of the wood density, fiber length and fiber length width ratio of the Casuarina ephedra were mostly less than 2%. The inheritance gain of the wood density of Casuarina equisetifolia was close to 5%, and the inheritance of wood properties of Casuarina equisetifolia was inherited. The gain is above 5%. (5) 3 dating years, 4 species of Casuarina equisetifolia tree height, breast diameter and individual volume, and other 3 growth traits, both phenotypic and genetic correlation all reach very significant positive correlation (P0.01), indicating that the growth traits are closely related to each other and can be used for early prediction. The genetic correlation between the yellow wind resistance and the shape of all shapes and materials is not significant; RES and TPB, AP, BD have significant genetic correlation (P0.01), and have significant genetic negative correlation with APB (P0.01). In the selection of wind resistance, the emphasis is on the characters of the lateral branch, the trunk bifurcation site, the wood density and the branch angle, and the RES of the Casuarina equisetifolia. The significant positive phenotypic and genetic correlation (P0.05-0.01) is between SFS, BD and FL. In the selection of wind resistance, the main focus is on the trunk straightness, the large wood density, the fiber length and so on. The RES and SFS in the mountain Casuarina equisetifolia, and the FL are significant positive phenotypic and genetic correlation (P0.05-0.01). In the selection of wind resistance, the main focus is on the high straightness and fiber length of the main trunk. The correlation between growth and shape and material shape showed that the growth traits of Casuarina ephedra and Casuarina equisetifolia were positively correlated with FL (P0.01), and had no significant correlation with LTW (P > 0.05). The growth traits and LTW could be selected separately and long fiber in the selection process of Casuarina ephedra and Casuarina equisetifolia. Selection can consider the fast-growing source. (6) select tree height H7 (X1), DBH D7 (X2), wind resistance RES (X3), lateral branch thickness TPB (X4), trunk straightness SFS (X5), wood density BD (X6), fiber length, fiber width ratio, and fiber length width ratio. The excellent provenances were Dongshan, Lingao, Ledong and 18127. The excellent provenances of roughwood Casuarina were 131411398713142 and 15939, the excellent provenances of Casuarina equisetifolia were 20477 and 15574, and the excellent provenances of Sanchi Kiasahuang were 178771949019489 and 18849. to emphasize the exponential equation of growth traits. The excellent species of Casuarina ephedra were Dongshan, Lingao, Ledon. G and 18127; the excellent seed source of Casuarina equisetifolia is 131411398713142 and 15939, the fine species of Casuarina equisetifolia are 14005 and 20477, and the excellent source of the mountain Casuarina equisetifolia is 194901948917877 and 18950. to emphasize the material character index equation. The excellent seed source of the Casuarina ephedra is 18269, Dongshan, Lingao and Huian, and the excellent provenance of the Casuarina equisetifolia. The best provenances of Casuarina equisetifolia were 131411398713142 and 15939, 20477 and 13519 respectively, and the excellent provenances of Casuarina equisetifolia were 178771949019489 and 18849..
【學(xué)位授予單位】:中國(guó)林業(yè)科學(xué)研究院
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:S792.93
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 葉功富;張水松;徐俊森;蘇全興;林武星;王維輝;施純淦;隆學(xué)武;;木麻黃低效防護(hù)林的結(jié)構(gòu)特征和防護(hù)效能研究[J];防護(hù)林科技;2000年S1期
2 葉功富;張水松;徐俊森;林武星;曾國(guó)強(qiáng);吳壽德;譚芳林;林捷;;木麻黃低效林類型劃分及量化指標(biāo)的研究[J];防護(hù)林科技;2000年S1期
3 曾國(guó)強(qiáng);葉功富;王玨新;吳評(píng)陽(yáng);林武星;高美玲;吳惠忠;譚芳林;隆學(xué)武;;木麻黃低效防護(hù)林成因分析及改造途徑的研究[J];防護(hù)林科技;2000年S1期
4 林武星;葉功富;鄭天漢;賴文勝;徐俊森;楊細(xì)明;譚芳林;潘惠忠;;不同木麻黃樹種的抗旱特性及其應(yīng)用的研究[J];防護(hù)林科技;2000年S1期
5 黃婷婷;木麻黃防護(hù)林持續(xù)經(jīng)營(yíng)問(wèn)題初探[J];福建林業(yè)科技;2001年01期
6 黃婷婷;;木麻黃防護(hù)林持續(xù)經(jīng)營(yíng)芻議[J];林業(yè)勘察設(shè)計(jì);2001年02期
7 張?jiān)粕?;椒江防護(hù)林 重用木麻黃[J];浙江林業(yè);2002年07期
8 陳彥;王國(guó)明;周堅(jiān);;木麻黃抗逆性研究進(jìn)展[J];植物學(xué)通報(bào);2005年06期
9 李茂瑾;;木麻黃造林措施和混交造林技術(shù)研究[J];安徽農(nóng)學(xué)通報(bào);2008年17期
10 洪光親;;淺談木麻黃更新改造的有效途徑[J];科技創(chuàng)業(yè)家;2012年16期
相關(guān)會(huì)議論文 前3條
1 陳_g;方發(fā)之;仲崇祿;張勇;陳雨;陳珍;;海南西部干旱地區(qū)木麻黃優(yōu)良無(wú)性系選擇研究[A];第十三屆中國(guó)科協(xié)年會(huì)第16分會(huì)場(chǎng)-沿海生態(tài)建設(shè)與城鄉(xiāng)人居環(huán)境學(xué)術(shù)研討會(huì)論文集[C];2011年
2 王電杰;溫國(guó)勝;童再康;許基全;鄔金;劉婷霞;;浙江大鹿島木麻黃種群的分布格局[A];第十三屆中國(guó)科協(xié)年會(huì)第16分會(huì)場(chǎng)-沿海生態(tài)建設(shè)與城鄉(xiāng)人居環(huán)境學(xué)術(shù)研討會(huì)論文集[C];2011年
3 葉功富;侯杰;張立華;盧昌義;陳勝;黃榮欽;;木麻黃-厚莢相思混交林的根際土壤養(yǎng)分和酶活性[A];節(jié)能環(huán)保 和諧發(fā)展——2007中國(guó)科協(xié)年會(huì)論文集(三)[C];2007年
相關(guān)重要報(bào)紙文章 前5條
1 中國(guó)綠色時(shí)報(bào)記者 雷姝彥;木麻黃:無(wú)可替代的沿海沙地之綠[N];中國(guó)綠色時(shí)報(bào);2010年
2 本報(bào)記者 范敏;木麻黃“綠化衛(wèi)士”形神兼?zhèn)鋄N];中國(guó)花卉報(bào);2011年
3 ;沿海防護(hù)林優(yōu)良樹種——木麻黃[N];福建科技報(bào);2004年
4 本報(bào)記者 何金 通訊員 張鵬 曾志剛;木麻黃的故事[N];福建日?qǐng)?bào);2014年
5 本報(bào)記者 張雷;“綠色屏障”與“威馬遜”的生死較量[N];中國(guó)綠色時(shí)報(bào);2014年
相關(guān)博士學(xué)位論文 前8條
1 韓強(qiáng);四種木麻黃種源變異與選擇研究[D];中國(guó)林業(yè)科學(xué)研究院;2017年
2 胡盼;短枝木麻黃種質(zhì)資源遺傳多樣性研究[D];中國(guó)林業(yè)科學(xué)研究院;2015年
3 劉憲釗;熱帶海岸木麻黃人工林近自然經(jīng)營(yíng)模式研究[D];中國(guó)林業(yè)科學(xué)研究院;2011年
4 張勇;三種木麻黃的遺傳改良研究[D];中國(guó)林業(yè)科學(xué)研究院;2013年
5 黃義雄;福建濱海木麻黃防護(hù)林生態(tài)功能研究[D];東北師范大學(xué);2013年
6 林武星;木麻黃(Casuarina equisetifolia)自身他感作用響應(yīng)規(guī)律的研究[D];福建農(nóng)林大學(xué);2005年
7 張立華;短枝木麻黃小枝單寧形成的環(huán)境效應(yīng)[D];廈門大學(xué);2009年
8 姚甲寶;人工模擬條件下木荷苗木覓取光養(yǎng)塑性行為及其種源差異[D];中國(guó)林業(yè)科學(xué)研究院;2017年
相關(guān)碩士學(xué)位論文 前10條
1 傅培佳;影響晉江市沿;闪謳г炝殖尚У沫h(huán)境因子[D];福建農(nóng)林大學(xué);2015年
2 陳德志;海岸前沿風(fēng)沙運(yùn)動(dòng)規(guī)律及其對(duì)木麻黃防護(hù)林的影響[D];福建農(nóng)林大學(xué);2015年
3 付甜;木麻黃水培生根生理特性及遺傳變異的研究[D];中南林業(yè)科技大學(xué);2016年
4 李慧敏;木麻黃林地微生物次生代謝產(chǎn)物及真菌群落結(jié)構(gòu)多樣性分析[D];海南師范大學(xué);2016年
5 黃國(guó)寧;海南省島東林場(chǎng)木麻黃退化人工林補(bǔ)植模式研究[D];中南林業(yè)科技大學(xué);2015年
6 鐘春柳;木麻黃生態(tài)化學(xué)計(jì)量特征及其對(duì)海岸梯度的響應(yīng)[D];福建師范大學(xué);2016年
7 鄭錕;沙質(zhì)海岸木麻黃防護(hù)林的結(jié)構(gòu)配置與防護(hù)效能研究[D];福建農(nóng)林大學(xué);2008年
8 武沖;木麻黃生殖生物學(xué)研究[D];海南大學(xué);2010年
9 林紅葉;沿海木麻黃防護(hù)林可持續(xù)經(jīng)營(yíng)配套技術(shù)研究[D];福建農(nóng)林大學(xué);2010年
10 林愛玉;沿海沙地竹子和木麻黃林防風(fēng)固沙性能研究[D];福建農(nóng)林大學(xué);2011年
,本文編號(hào):1965303
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1965303.html