濕潤(rùn)速度與化學(xué)材料對(duì)土壤水力特性的影響及機(jī)理研究
本文選題:土壤 切入點(diǎn):濕潤(rùn)速度 出處:《內(nèi)蒙古農(nóng)業(yè)大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:土壤結(jié)構(gòu)不良是影響干旱半干旱地區(qū)農(nóng)業(yè)發(fā)展的根本性問(wèn)題,近年來(lái)研究化學(xué)調(diào)控材料改良措施的趨勢(shì)蔚然成風(fēng)。聚丙烯酰胺(Polyacrylamide,簡(jiǎn)稱PAM)和高吸水性樹脂(Super Absorbent Polymer,簡(jiǎn)稱SAP)因其獨(dú)特的分子結(jié)構(gòu)和水解特性已經(jīng)在土壤入滲和土壤水分運(yùn)動(dòng)等方面發(fā)揮了積極的作用,但是其影響機(jī)理仍然不是十分明確,導(dǎo)致兩種改良材料在不同類型土壤中推廣應(yīng)用還存在一些阻礙。由于兩種材料與土壤結(jié)合發(fā)揮自身作用并不是一蹴而就,需要一定的作用時(shí)間來(lái)完成,所以不同的水流濕潤(rùn)速度和測(cè)定階段就導(dǎo)致了兩種材料不同的作用效果,而這方面的研究卻并不多見。為此,本文通過(guò)室內(nèi)試驗(yàn)與少部分田間試驗(yàn)相結(jié)合的方法,研究了不同濕潤(rùn)速度和兩種材料對(duì)土壤水力特性的影響,并且通過(guò)測(cè)定土壤物理參數(shù)等手段探索影響機(jī)理,旨在探討濕潤(rùn)速度和化學(xué)材料對(duì)土壤水分運(yùn)動(dòng)的影響規(guī)律,為PAM和SAP在土壤結(jié)構(gòu)改良方面的應(yīng)用提供必要的數(shù)據(jù)支撐和理論指導(dǎo),研究結(jié)果如下:(1)濕潤(rùn)速度顯著影響土壤水力性質(zhì):濕潤(rùn)速度越大,同一吸力下的土壤質(zhì)量含水率越大,對(duì)于ESP值較高的粉砂壤土和粉質(zhì)壤土,濕潤(rùn)速度對(duì)土壤水分特征曲線的影響程度減弱;濕潤(rùn)速度顯著影響土壤累計(jì)入滲量和入滲速率,濕潤(rùn)速度越快,土壤累計(jì)入滲量越少,入滲速率越低,四種土壤均呈現(xiàn)這樣的變化規(guī)律,隨著濕潤(rùn)速度的加快,累計(jì)入滲量降低幅度在10.32%~32.67%之間變化,入滲速率減小幅度在24.16%~31.37%之間變化;濕潤(rùn)速度越大,土壤飽和導(dǎo)水率越小,濕潤(rùn)速度由0mm/h增加至16.25mm/h時(shí),土壤飽和導(dǎo)水率降低幅度在17.08%-31.51%之間。(2)濕潤(rùn)速度之所以對(duì)土壤水力性質(zhì)產(chǎn)生影響是因?yàn)樗鳚駶?rùn)過(guò)程的剪切力影響了土壤孔隙結(jié)構(gòu),濕潤(rùn)速度不同,剪切力的大小就不同,對(duì)土壤孔隙結(jié)構(gòu)的影響程度亦不盡相同。濕潤(rùn)速度越大,土壤結(jié)構(gòu)破壞越明顯,孔隙度越低,導(dǎo)致了土壤質(zhì)量含水率越大,土壤飽和導(dǎo)水率也越低。同時(shí)濕潤(rùn)速度的差異還改變了土壤孔隙分布狀況的不同,尤其是土壤大孔隙含量的多少,通過(guò)試驗(yàn)表明濕潤(rùn)速度越大,土壤非毛管孔隙率和土壤導(dǎo)氣率越小。(3)PAM能夠增加土壤持水能力,增加土壤水平擴(kuò)散速率:在影響土壤入滲性能方面,在不同階段呈現(xiàn)不同的規(guī)律:在濕潤(rùn)階段,施用PAM阻礙了土壤中的水流運(yùn)動(dòng),土壤累計(jì)入滲量降低范圍在11.19%-29.85%之間;而在連續(xù)流階段,施用PAM卻促進(jìn)了水流運(yùn)動(dòng),土壤穩(wěn)定入滲率增加幅度在25.98%-88.57%范圍內(nèi)變化:PAM之所以在不同階段對(duì)土壤入滲產(chǎn)生不同的影響,是由于PAM本身的水解特性有關(guān),在濕潤(rùn)階段,干粉PAM遇水后逐漸水解,分子鏈不斷延展伸長(zhǎng)堵塞了土壤孔隙,阻礙了水流運(yùn)動(dòng),而到了連續(xù)流階段.經(jīng)過(guò)了干燥后再濕潤(rùn)的PAM已經(jīng)完全水解.發(fā)揮了穩(wěn)固土壤結(jié)構(gòu)的作用:此外,PAM還使得土壤飽和導(dǎo)水率減小,減小幅度在8.25%-17.11%之間。(4)SAP同樣能夠增加土壤持水能力,增加土壤水平擴(kuò)散速率;在影響土壤入滲性能方面,無(wú)論是濕潤(rùn)階段還是連續(xù)流階段均能起到促進(jìn)水流入滲的作用。SAP處理使土壤累計(jì)入滲量增加11.19%-29.85%,穩(wěn)定入滲率提高5.71%-25.00%;SAP之所以對(duì)土壤入滲產(chǎn)生積極的影響,是由于SAP吸水后體積迅速膨脹,改變了土壤結(jié)構(gòu),使得土壤孔隙含量特別是大孔隙含量增加,從而為土壤中水流的運(yùn)動(dòng)提供了通道。(5)PAM和SAP之所以對(duì)土壤水力特性產(chǎn)生影響,主要是因?yàn)镻AM和SAP改變了土壤的結(jié)構(gòu)。PAM和SAP都能提高土壤總孔隙率,對(duì)于不同類型的土壤,提高幅度在2.76%-16.18%之間變化,另外PAM和SAP對(duì)土壤孔隙分布也產(chǎn)生了影響,在不同的作用時(shí)間影響效果并不相同:在兩種材料遇水濕潤(rùn)階段,PAM增加9.38%-21.59%的毛管孔隙率,同時(shí)降低土壤非毛管孔隙率和導(dǎo)氣率,降低幅度在7.24%-16.16%之間:而SAP卻降低了土壤毛管孔隙率,降低幅度在11.16%-20.10%之間變化,同時(shí)增加了25.23%-63.48%的土壤非毛管孔隙率和土壤導(dǎo)氣率。經(jīng)過(guò)了干濕循環(huán)后,PAM與土壤充分結(jié)合,降低9.33%~33.29%的土壤毛管孔隙率,同時(shí)增加土壤非毛管孔隙率和土壤導(dǎo)氣率,增加幅度均達(dá)到30%以上,在31.63%-37.45%之間,而SAP處理的土壤毛管孔隙率較對(duì)照有所增加,增加幅度在5.74%-20.21%之間變化,同時(shí)也提高了土壤非毛管孔隙率和土壤導(dǎo)氣率,提高幅度在10.02%-15.41%之間。此外PAM和SAP還能夠增加土壤團(tuán)聚體含量,特別是PAM能夠顯著增加團(tuán)聚體的水穩(wěn)定性。PAM和SAP均改變了土壤的微觀結(jié)構(gòu),PAM使土壤結(jié)構(gòu)更加密實(shí),顆粒表面的層次感減弱,而SAP使土壤顆粒的層次更加分明。(6)統(tǒng)計(jì)結(jié)果表明,施用PAM和SAP均能達(dá)到優(yōu)化土壤結(jié)構(gòu)和水力特性參數(shù)的目的,且四種類型土壤均在PAM施用量為45kg/hm2時(shí)各項(xiàng)指標(biāo)達(dá)到最優(yōu)。在生產(chǎn)實(shí)踐中,PAM和SAP均起到了增加作物整個(gè)生育期土壤亞表層和根層的土壤含水率,同時(shí)增加了作物產(chǎn)量,施用PAM的小麥增產(chǎn)率達(dá)到19.11%,而施用SAP的胡蘿卜增產(chǎn)率為16.78%。說(shuō)明PAM和SAP起到了提高水分利用效率和增加產(chǎn)量的作用。
[Abstract]:The soil structure is the fundamental problem of adverse effects of agricultural development in arid and semiarid area, studies on chemical control of material improvement measures in recent years become the trend. Polyacrylamide (Polyacrylamide, referred to as PAM) and superabsorbent resin (Super Absorbent Polymer, referred to as SAP) because of its unique molecular structure and hydrolysis characteristics has been in terms of soil infiltration and the soil water movement has played a positive role, but its influence mechanism is still not very clear, resulting in two kinds of improved materials applied in different soil types. There are still some obstacles due to the two kinds of materials combined with soil to play their role is not easy, need a period of time to complete, so the water wetting rate of different and the measurement period leads to the effect of two kinds of different materials, and the research of this aspect is rare. Therefore, this article through The indoor test method and some field test combination, the effects of different wetting rate and two kinds of materials on soil hydraulic properties, and through the determination of soil physical parameters and other means to explore the influence mechanism, aims to explore the wetting velocity and chemical material influence the dynamic of soil moisture, provide theoretical support and guidance necessary data the application of PAM and SAP in the improvement of soil structure, the research results are as follows: (1) wetting rate had significant effect on soil hydraulic properties: wetting velocity increasing, the content of soil water quality under the same suction rate is high, for the high ESP value of silty loam and silty loam, wetting rate influence on soil moisture the characteristic curves of the decline; wetting rate significantly affected soil cumulative infiltration and infiltration rate, wetting faster, less accumulated into the soil infiltration, the infiltration rate is low, four kinds of soil Show the same variation, with the wetting speed, the cumulative infiltration decreased greatly varied from 10.32% to 32.67%, the infiltration rate decrease changes from 24.16% to 31.37%; the greater the wetting rate, soil saturated hydraulic conductivity decreases, wetting rate increased from 0mm/h to 16.25mm/h, soil saturated hydraulic conductivity to reduce the rate of 17.08%-31.51%. (2) the wetting rate influence on soil hydraulic properties because of shear flow wetting process affected the soil pore structure, wet shear stress at different speeds, the size is different, the influence degree of the soil pore structure is different. The greater the wetting rate, the destruction of soil structure obviously, the lower the porosity, lead to soil moisture increases, soil saturated hydraulic conductivity is low. At the same time, the wetting rate also changed the soil pore distribution is different, especially How much is the soil macropore content, the experiments show that the wetting velocity increasing, the capillary porosity and soil air permeability of soil. The smaller (3) PAM could increase soil water holding capacity, increase the level of diffusion rate in soil: effects of soil infiltration properties, showing different rules in different stages: in the humid the application of PAM stage, hinder water movement in the soil, soil cumulative infiltration decreased in the range of 11.19%-29.85%; while in the continuous phase, the application of PAM can promote the movement of water flow and soil stable infiltration rate increases in the range of 25.98%-88.57% PAM in different stages of change: the reason for soil infiltration effect is due to the hydrolysis of PAM its own characteristics, in the wet, dry PAM water gradually after hydrolysis, molecular chain has been extended blocked soil pore, hinder water movement, and to the continuous phase. After drying after wet hydrolysis. PAM has completely played solid soil structure effect: in addition, PAM also makes the soil saturated hydraulic conductivity decreases, decreases in the range of 8.25%-17.11%. (4) SAP can also increase soil water holding capacity, increase the level of diffusion rate in soil; effect of soil infiltration. Whether it is wet or continuous phase can play a role in promoting.SAP water infiltration of soil cumulative infiltration increased 11.19%-29.85%, stable infiltration rate is increased by 5.71%-25.00%; SAP has positive impact on soil infiltration, is due to SAP water after the rapid expansion of the volume, change of soil structure, the soil pore content especially large pores increases, so as to provide a channel for soil water movement. (5) PAM and SAP's influence on soil hydraulic properties, mainly due to changes in PAM and SAP The structure of.PAM and SAP in soil can increase soil total porosity, for different types of soil, increase the amplitude changes between 2.76%-16.18%, PAM and SAP also have an effect on soil pore distribution, the effect in different time is not the same: in water wet in two kinds of materials, PAM increased capillary porosity 9.38%-21.59%, at the same time reduce the soil non capillary porosity and air permeability, decrease in the range of 7.24%-16.16%, while SAP decreased the soil capillary porosity, reduce the amplitude changes between 11.16%-20.10%, while increasing the capillary porosity and soil air permeability of 25.23%-63.48% soil. After non wetting drying cycles, and reduce soil PAM fully integrated. 9.33% ~ 33.29% of the soil capillary porosity, and increase the capillary porosity and soil air permeability of soil, increase rate reached more than 30%, in 31.63%-37.45% Between the SAP treatment compared with the control soil capillary porosity increased, the increase in the range of 5.74%-20.21%, but also improve the soil non capillary porosity and soil air permeability, improve the rate of 10.02%-15.41%. In addition PAM and SAP can also increase soil aggregate content, especially PAM can significantly increase the water stability of aggregates.PAM and SAP have changed the microstructure of soil, PAM makes the soil more compact structure, particle surface layering weakened, while SAP made soil particles clearer. (6) the statistical results showed that the application of PAM and SAP can optimize soil structure and hydraulic characteristic parameters, and four types of soil in the PAM application amount was 45kg/hm2 when the index reached the optimum. In practice, PAM and SAP were to increase the crop growth period of water soil sub surface and root layer rate, at the same time increased With the increase of crop yield, the yield of wheat increased by 19.11% when applying PAM, while the yield increasing rate of SAP was 16.78%., indicating that PAM and SAP played an important role in increasing water use efficiency and increasing yield.
【學(xué)位授予單位】:內(nèi)蒙古農(nóng)業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:S152.7
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 張建民,侯杰,周著;懸板分層式引水渠首懸板區(qū)水力特性研究[J];新疆農(nóng)業(yè)大學(xué)學(xué)報(bào);1997年03期
2 詹衛(wèi)華,黃冠華;土壤水力特性分形特征的研究進(jìn)展[J];水科學(xué)進(jìn)展;2000年04期
3 龔時(shí)宏;水中摻氣對(duì)管道水流水力特性的影響及減輕其危害的措施[J];灌溉排水;1989年04期
4 侯杰,成軍,邱秀云,周著;懸柵消能工水力特性研究[J];新疆農(nóng)業(yè)大學(xué)學(xué)報(bào);2003年03期
5 鄢碧鵬;朱紅耕;袁壽其;;新型肘形進(jìn)水流道水力特性預(yù)測(cè)[J];農(nóng)業(yè)機(jī)械學(xué)報(bào);2006年02期
6 聞建龍;機(jī)翼形堰水力特性研究[J];排灌機(jī)械;1994年04期
7 陳江林;呂宏興;石喜;朱德蘭;王文娥;;T型三通管水力特性的數(shù)值模擬與試驗(yàn)研究[J];農(nóng)業(yè)工程學(xué)報(bào);2012年05期
8 吉慶豐;袁曉淵;葛蘊(yùn);龐圣;;梯形渠道圓柱形量水槽水力特性數(shù)值模擬[J];灌溉排水學(xué)報(bào);2012年02期
9 郝瑞霞;馬瑞群;曹靖;;電廠引水箱涵水力特性的試驗(yàn)研究——以福建可門電廠為例[J];西北林學(xué)院學(xué)報(bào);2010年05期
10 孫永勝;張新燕;;低壓地面滴灌水力特性研究進(jìn)展[J];水利與建筑工程學(xué)報(bào);2011年03期
相關(guān)會(huì)議論文 前6條
1 傅金祥;趙玉華;張振義;;蓄水裝置水力特性對(duì)水質(zhì)的影響研究[A];中國(guó)土木工程學(xué)會(huì)水工業(yè)分會(huì)第四屆理事會(huì)第一次會(huì)議論文集[C];2002年
2 陳金剛;張景飛;劉大全;;充填裂隙水力特性研究進(jìn)展[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2009論文摘要集[C];2009年
3 潘欽;劉亞坤;倪漢根;楊濤;;雙管式溢流塔水力特性試驗(yàn)研究[A];2007重大水利水電科技前沿院士論壇暨首屆中國(guó)水利博士論壇論文集[C];2007年
4 黃本勝;陳秋月;邱靜;劉月琴;吉紅香;;有水葫蘆的河道水力特性試驗(yàn)研究[A];第二十屆全國(guó)水動(dòng)力學(xué)研討會(huì)文集[C];2007年
5 韓連超;潘艷華;王姝;;寬尾墩聯(lián)合消能工體型選擇及水力特性的研究[A];中國(guó)水利學(xué)會(huì)2003學(xué)術(shù)年會(huì)論文集[C];2003年
6 楊帆;郭軍;陳惠泉;;明渠岸邊側(cè)向取水口的三維數(shù)值計(jì)算[A];第三屆全國(guó)水力學(xué)與水利信息學(xué)大會(huì)論文集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 本報(bào)通訊員 毛兆民;“摻氣分流墩水力特性研究”獲陜西省科技一等獎(jiǎng)[N];中國(guó)水利報(bào);2003年
相關(guān)博士學(xué)位論文 前4條
1 韓冬;濕潤(rùn)速度與化學(xué)材料對(duì)土壤水力特性的影響及機(jī)理研究[D];內(nèi)蒙古農(nóng)業(yè)大學(xué);2016年
2 張昌兵;孔板型內(nèi)消能工水力特性試驗(yàn)研究及數(shù)值模擬[D];四川大學(xué);2003年
3 郭春立;水輪機(jī)筒閥多缸協(xié)同關(guān)閉過(guò)程水力特性與控制策略研究[D];天津大學(xué);2009年
4 曹繼文;明渠岸邊橫向取水的三維水力特性及簡(jiǎn)易防沙措施試驗(yàn)研究[D];中國(guó)水利水電科學(xué)研究院;2004年
相關(guān)碩士學(xué)位論文 前10條
1 呂緒明;水流自摻氣與底部強(qiáng)迫摻氣水力特性研究[D];昆明理工大學(xué);2015年
2 張巖;洞式溢洪道的水力特性試驗(yàn)及數(shù)值模擬研究[D];大連理工大學(xué);2015年
3 高東紅;三維魚道水力特性及魚體上溯行進(jìn)能力數(shù)值模擬研究[D];大連理工大學(xué);2015年
4 丁賢臣;水閘水力特性三維數(shù)值模擬研究及結(jié)構(gòu)優(yōu)化[D];合肥工業(yè)大學(xué);2015年
5 巨淑君;90°彎道中T型丁壩的水力特性研究[D];福州大學(xué);2013年
6 王新麗;正槽溢洪道整體水力特性試驗(yàn)研究和數(shù)值模擬[D];太原理工大學(xué);2012年
7 張樂(lè)元;管道車在不同導(dǎo)流條長(zhǎng)度條件下運(yùn)移的水力特性研究[D];太原理工大學(xué);2010年
8 曾甄;迷宮堰水力特性綜合研究及其應(yīng)用[D];河海大學(xué);2004年
9 金俊偉;清水池水力特性研究及應(yīng)用[D];清華大學(xué);2005年
10 鄭政;多孔并聯(lián)分段低壓輸水系統(tǒng)的水力特性和控制研究[D];天津大學(xué);2006年
,本文編號(hào):1563060
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1563060.html