天堂国产午夜亚洲专区-少妇人妻综合久久蜜臀-国产成人户外露出视频在线-国产91传媒一区二区三区

影響稻米理化品質(zhì)微效基因的定位與效應(yīng)解析

發(fā)布時間:2018-01-24 00:08

  本文關(guān)鍵詞: 水稻 染色體片段代換系 稻米品質(zhì) 微效QTL定位 淀粉結(jié)構(gòu) SSI基因 出處:《揚(yáng)州大學(xué)》2016年博士論文 論文類型:學(xué)位論文


【摘要】:水稻是我國主要的糧食作物之一。稻米品質(zhì)是稻米作為商品流通與消費(fèi)過程中的一種綜合評價,反映了稻米本身的物理及化學(xué)特性。稻米品質(zhì)屬于典型的質(zhì)量-數(shù)量性狀,在主效基因控制的基礎(chǔ)上還存在一些微效基因。利用高覆蓋度的秈粳間染色體片段代換系(CSSL)鑒定微效QTL,優(yōu)勢突出。隨著粳稻品種日本晴和秈稻品種9311基因組測序工作的完成,以及高密度分子標(biāo)記圖譜的構(gòu)建,CSSL群體的構(gòu)建變得易行,為深入挖掘影響稻米品質(zhì)的微效QTL或基因提供了便利,從而能為稻米品質(zhì)改良提供新的基因資源。本研究利用以秈稻品種9311為供體、粳稻品種日本晴為受體構(gòu)建的整套CSSL為材料,考察了群體稻米品質(zhì)主要理化指標(biāo),借助重測序鑒定的精確基因型圖譜,利用ICiMappingv2.2軟件定位到一批相關(guān)的QTL,同時發(fā)現(xiàn)5個QTL具有一因多效,對定位到含這些QTL的3個關(guān)鍵家系進(jìn)一步分析,通過淀粉分子結(jié)構(gòu)的剖析,探索QTL效應(yīng)對淀粉結(jié)構(gòu)的影響。為稻米品質(zhì)的形成及其變異提供豐富的遺傳機(jī)理。以此同時,利用轉(zhuǎn)基因材料和近等基因系等遺傳材料對參與胚乳淀粉合成的跚基因等位變異的效應(yīng)解析。主要研究結(jié)果如下:1、利用染色體片段代換系定位稻米理化品質(zhì)性狀的微效QTL粳稻品種日本晴和秈稻品種9311都含有相同的服b等位基因,因此利用以這兩個親本為受體和供體的染色體片段代換系進(jìn)行品質(zhì)分析,可避免因該主效基因差異對稻米品質(zhì)的影響。本研究重點(diǎn)以已構(gòu)建的127個染色體片段代換系為材料,通過全基因組重測序分析鑒定其基因型,利用ICiMapping v2.2軟件定位到了一批與稻米品質(zhì)相關(guān)的微效QTL。1)稻米理化品質(zhì)是一個綜合性狀,各性狀間存在復(fù)雜的關(guān)系。由于不同的研究者所用的實(shí)驗(yàn)材料和分析方法各不相同,并且性狀本身在遺傳表達(dá)上較復(fù)雜,因此對稻米的遺傳控制有著不同的解釋。本研究對影響稻米理化品質(zhì)的7個品質(zhì)性狀14個參數(shù)進(jìn)行了QTL分析,在兩個環(huán)境下共檢測到35個微效QTL,其中19個微效QTL受環(huán)境影響較小,能穩(wěn)定存在。部分QTL與前人報道的結(jié)果相同。還有一批QTL如qGC 7.1和qGT12.1與實(shí)驗(yàn)室前期研究結(jié)果一致,QTL定位區(qū)間得到進(jìn)一步縮小。2)檢測到5個具有多效性的QTL,即一個QTL位點(diǎn)(簇)對多個稻米品質(zhì)性狀有效應(yīng)。其中3個QTL簇與淀粉的理化性質(zhì)有關(guān)。第一個QTL簇位于第2染色體上,與直鏈淀粉、糊化溫度和冷膠粘度的遺傳有關(guān),即qAC2.1、qGT2.1、qCPV2.1位于相同的位點(diǎn),此位點(diǎn)在代換系N132中檢測到;第二個QTL簇在第3染色體上,控制著峰值粘度,膠稠度、糙米蛋白含量的遺傳,即qPKV3.1、qGC3.1和qBRPC3.1位于同一位點(diǎn),此位點(diǎn)在代換系N29中檢測到;第三個QTL簇位于第6染色體上,控制著糙米和精米蛋白質(zhì)含量的遺傳,即qBRPC6.1與qMRPC6.1位于相同的位點(diǎn),在多個代換系中(N24、N39、N66、 N67)檢測到。第四個QTL簇位于第7染色體上,與稻米蛋白質(zhì)含量遺傳有關(guān),即qBRPC7.1與qMRPC7.1位于相同的位點(diǎn),在多個代換系中(N48、N60、N62、N73、N88)檢測到。第五個QTL簇在第12染色體上,與直鏈淀粉、糊化溫度、峰值粘度和冷膠粘度的遺傳相關(guān),即控制直鏈淀粉的叫C12.1、控制糊化溫度的qGT12.1、控制峰值粘度的qPKV12.1以及控制冷膠粘度的qCPV12.1位于相同的染色體片段上,在代換系N127中檢測到。2、利用3個重點(diǎn)染色體片段代換系分析重要QTL形成的淀粉結(jié)構(gòu)基礎(chǔ)與受體親本相比,含有多個定位QTL的3個關(guān)鍵染色體片段代換系(N29、N127和N132)成熟種子淀粉的糊化起始溫度降低,吸熱峰前移,此結(jié)果與RVA譜的結(jié)果一致。淀粉的DSC相應(yīng)特征值數(shù)據(jù)顯示,它們對應(yīng)的峰值溫度、終止溫度、熱焓值,較受體親本均有所降低,接近于供體親本9311。淀粉精細(xì)結(jié)構(gòu)研究發(fā)現(xiàn),含有來自9311代換片段的N29、N127和N132,其稻米淀粉含有較少的A鏈和短B鏈,推測短分支的支鏈淀粉A鏈和B1鏈含量的減少可能由QTL效應(yīng)引起。綜合分析,3個極端家系稻米淀粉可能由于含有較少的A鏈和短B鏈、較多的中長鏈組分,共同抑制了淀粉粒的膨脹,從而導(dǎo)致了稻米理化性質(zhì)的變化。3、水稻SSI基因等位變異的遺傳效應(yīng)分析可溶性淀粉合成酶基因SSI在水稻理化品質(zhì)形成中的作用并不大,屬微效基因。但其確切的效應(yīng)并沒有被詳細(xì)解析。本研究利用含不同SSI等位基因(秈稻、粳稻)來源的SSI-RNAi材料及近等基因系,對不同SSI等位基因的表達(dá)、對稻米理化品質(zhì)與淀粉結(jié)構(gòu)的效應(yīng)等進(jìn)行了祥細(xì)分析。結(jié)果顯示,SSI在秈粳間的兩個主要等位基因(SSI j和SSIi)表達(dá)的差異引起了稻米淀粉結(jié)構(gòu)的微妙變化,進(jìn)而表現(xiàn)為對稻米理化品質(zhì)有不同的效應(yīng)。對含不同SSI等位基因的水稻品種分別抑制SSI基因后,稻米的理化品質(zhì)產(chǎn)生了顯著的影響。SSI-RNAi轉(zhuǎn)基因材料直鏈淀粉含量極顯著提高,峰值粘度,崩解值呈極顯著降低。不同SSI等位基因遺傳背景下,SSI-RNAi材料的表現(xiàn)也存在一定的差異。含SSI j等位基因的粳稻背景下,RNAi系稻米的消堿值比未轉(zhuǎn)化親本高,達(dá)到了極顯著差異;而在SSI i等位基因的秈稻背景下,RNAi系稻米的消堿值比親本要低許多。RVA譜的峰值時間在秈稻RNAi系與親本間達(dá)到了極顯著差異,而在粳稻背景下沒有差異。這也進(jìn)一步暗示了不同SSI等位基因?qū)Φ久灼焚|(zhì)遺傳的效應(yīng)是不同的。對稻米淀粉的DSC分析表明,SSI-RNAi材料與其未轉(zhuǎn)化親本相比,起始溫度都顯著下降,表現(xiàn)為提前糊化,熱晗值都下降。淀粉結(jié)晶度數(shù)據(jù)表明,RNAi系相對親本而言,淀粉結(jié)晶度下降。說明干擾SSI基因表達(dá)后能引起淀粉晶體的改變。推測SSI基因在RNAi系中表達(dá)量降低后,可能引起淀粉結(jié)晶度下降,最終影響稻米的理化品質(zhì)及食味值。由GPC分析結(jié)果推測SSIj等位基因可能負(fù)責(zé)淀粉中長鏈的合成,一旦受干擾,淀粉結(jié)構(gòu)中中鏈長組份減少,SSIi則有可能負(fù)責(zé)低分子量鏈的合成。在轉(zhuǎn)基因系中可以看到當(dāng)SSIi被抑制后,低分子量淀粉分子組分減少。利用近等基因系,我們發(fā)現(xiàn)在相同的日本晴(NIP)遺傳背景下,不同SSI等位基因(SSIj和SSIi)表達(dá)存在差異。輪回親本(NIP-SSIj)和其近等基因系(NIP-SSIi稻米的直鏈淀粉含量相近,近等基因系NIP-NIL-SSIi稻米RVA譜比輪回親本高,發(fā)現(xiàn)峰值粘度極顯著增加,熱漿粘度顯著下降,崩解值顯著提高。這也暗示著秈、粳稻稻米品質(zhì)之間的差異,除受Wx主效基因影響外,還與SSI等位基因的變異有一定的聯(lián)系。DSC分析表明,SSI等位基因的變異導(dǎo)致了起始溫度顯著下降,表現(xiàn)為提前糊化,而峰值粘度、終止時間、熱晗值與輪回親本相比,均出現(xiàn)一定程度的下降。SSI等位基因的變異未能引起淀粉的結(jié)晶度的變化。上述結(jié)果表明,當(dāng)龍?zhí)馗χ械腟SIi導(dǎo)入日本晴后,近等基因系中SSI等位基因表達(dá)發(fā)生了改變,隨之引起低分子量短鏈的增加。這說明SSI等位基因在秈粳稻淀粉鏈長的分布中功能存在差異,同時意味著SSI等位基因間的變異導(dǎo)致秈粳稻之間支鏈淀粉結(jié)構(gòu)產(chǎn)生差異。綜合上述研究及取得的結(jié)果,一是通過以粳稻為遺傳背景的染色體片段代換系在兩年兩個環(huán)境下的實(shí)驗(yàn),對影響稻米理化品質(zhì)的14個參數(shù)進(jìn)行了QTL分析,共定位了35個QTL,其中5個位點(diǎn)具有一因多效;對含多個定位QTL的3個重要家系的淀粉結(jié)構(gòu)進(jìn)行了剖析,為解析CSSL稻米品質(zhì)的差異提供了很好的參考;二是利用RNAi轉(zhuǎn)基因系和近等基因系進(jìn)一步深入解析了栽培稻中SSI基因兩個主要等位變異對稻米品質(zhì)和淀粉結(jié)構(gòu)的效應(yīng)。
[Abstract]:Rice is one of the main food crops in China. The quality of rice is rice as a comprehensive evaluation of commodity circulation and consumption process, reflects the physical and chemical properties of rice itself. The rice quality belong to quantitative traits typical quality, based on the major gene control there are some minor genes with high. The coverage between Indica and japonica chromosome segment substitution lines (CSSL) identification of minor QTL advantages. With the japonica cultivar Nipponbare and indica cultivar 9311 genome sequencing was completed, and the construction of high-density molecular marker linkage map construction, CSSL group becomes easy, provides convenience for mining deeply affect the rice quality of micro effect QTL or gene, which can provide new gene resources for improving rice quality. This study using 9311 indica rice varieties as donors, Nipponbare CSSL receptor for the whole construction material for test To observe the main physical and chemical indexes of rice quality groups, accurate genotype map by re sequencing, to a number of related QTL by ICiMappingv2.2 software, also found that 5 QTL has a pleiotropic, 3 key lines containing these QTL positioning for further analysis, through the analysis of the molecular structure of starch and explore the effect of QTL on the structure of starch. Provide rich genetic mechanism for the formation of rice quality and its variation. At the same time, the use of transgenic materials and near isogenic lines and other genetic materials to participate in endosperm starch synthesis to allelic variation effect analysis. The main results are as follows: 1, minor QTL japonica cultivar Nipponbare and indica cultivar 9311 using chromosome segment substitution lines in rice quality traits of physicochemical positioning all contain the same B allele, so using the two parent receptor and donor chromosomes. Segment substitution line quality analysis, can avoid the influence of different genes on rice quality. 127 chromosome segment substitution lines in this study focuses on the building materials, through the analysis of whole genome sequencing to identify the genotype, the use of ICiMapping V2.2 software to locate a number of related micro effect and the quality of rice QTL.1) physico-chemical quality is a comprehensive character, there is a complex relationship between the characters. As the experimental materials and analysis methods used by different researchers have different traits, and genetic expression in itself is complex, so the genetic control of rice have a different interpretation. In this study, physical and chemical quality the effect of rice 7 quality traits of the 14 parameters of the QTL analysis, in the two environments were detected in 35 minor QTL, one of the 19 minor QTL is less affected by the environment, can exist stably. Part QTL and former newspaper The same results. There are a number of QTL such as qGC 7.1 and qGT12.1 and the previous research results, further narrowing the interval QTL positioning.2) detected 5 pleiotropic QTL, namely a QTL locus (clusters) have multiple effects on rice quality traits. The physicochemical properties of 3 QTL clusters and the starch. The first QTL cluster located on chromosome second, and amylose, genetic, gelatinization temperature and cool viscosity is qAC2.1, qGT2.1, qCPV2.1 in the same site, the site in the substitution lines detected in N132; second QTL cluster on chromosome third, controls the peak viscosity, gel consistency, genetic, protein content of brown rice, namely qPKV3.1, qGC3.1 and qBRPC3.1 located in the same site, the site in the substitution lines detected in N29; third QTL cluster located on chromosome sixth, the genetic control of brown rice and rice protein content, namely qBRPC6.1 and qMRPC6.1 On the same site, in a number of substitution lines (N24, N39, N66, N67) were detected. The fourth QTL cluster located on chromosome seventh, and protein content in rice genetic, namely qBRPC7.1 and qMRPC7.1 located on the same site, in a number of substitution lines (N48, N60, N62, N73, N88) detected. Fifth QTL clusters on chromosome twelfth, and amylose content, gelatinization temperature, peak viscosity and cool viscosity of genetic correlation, namely the control of amylose gelatinization temperature control named C12.1, qGT12.1, qPKV12.1 and qCPV12.1 peak viscosity control control of cold glue viscosity located on the same chromosome fragment, to detect.2 in substitution lines N127, using 3 key chromosome segment substitution lines analysis of the formation of QTL starch structure foundation and the recipient parent compared 3 key chromosome segment substitution lines and a plurality of positioning QTL containing (N29, N127 and N132) from mature seeds of gelatinization of starch It reduces the temperature of the endothermic peak forward, the results of the RVA spectra results. The corresponding characteristic values of starch DSC data show that the peak temperature, their corresponding end temperature, enthalpy, compared with the receptor parent decreased, close to the donor parent 9311. starch fine structure research found, containing from 9311 substitution segments N29, N127 and N132, the rice starch contains less A and B short chain chain, reduce speculation short branch amylopectin A chain and B1 chain content may be caused by the QTL effect. The comprehensive analysis of rice starch 3 extreme families may be due to contain less A chain and short chain B, more of the long chain group, jointly suppressed the swelling of starch granules, which leads to the changes of the physicochemical properties of.3 rice, genetic analysis of rice SSI gene alleles of the soluble starch synthase gene SSI in rice quality formation and the role of small, are minor base Because. But the exact effect has not been analyzed in detail. This study used with different SSI alleles (indica, japonica) source material and SSI-RNAi near isogenic lines, the expression of different SSI alleles, the physico-chemical quality and starch structure effect were analyzed. The results show that Xiangxi SSI, in between Indica and japonica two major alleles (SSI J and SSIi) expression differences caused a subtle change in the structure of rice starch, which showed a different effect on the physico-chemical quality. Rice varieties with different alleles of SSI were inhibited after SSI gene, the Physicochemical Quality of rice the significant effects of.SSI-RNAi transgenic plants significantly increased the amylose content, peak viscosity, breakdown value was significantly reduced. SSI allele genetic background, SSI-RNAi material performance are also different. SSI containing J allele Japonica background, RNAi rice setback than untransformed parental high significant differences; and in the SSI I allele of Indica Rice under the background of RNAi setback to the peak time of.RVA spectrum much lower than the parent reached extremely significant difference in indica rice RNAi lines and their parents, there was no difference in Japonica background. It also suggests that the effects of different SSI alleles on rice quality genetic is different. The rice starch DSC analysis showed that the SSI-RNAi material with untransformed parental compared to the initial temperature decrease is provided before gelatinization, heat value of Han descent. Starch crystallinity data show that RNAi system with respect to parents, the starch crystallinity decreased. Inhibition of expression of SSI gene can cause the change of starch crystal. It is suggested that expression of SSI gene in RNAi decreased, may cause the decrease of crystallinity of starch, the final The influence of physical and chemical quality and palatability of rice value. The results of that analysis and synthesis of SSIj allele might be responsible for the long chain of starch by GPC, once the interference in the structure of starch chain length were reduced, SSIi is likely responsible for the synthesis of low molecular weight chain. In transgenic lines can be seen when SSIi was inhibited after low molecular weight starch components decrease. By using near isogenic lines, we found that in the same Nipponbare (NIP) genetic background, different SSI alleles (SSIj and SSIi). The expression differences between the recurrent parent (NIP-SSIj) and its near isogenic line (the amylose content of rice NIP-SSIi close, near isogenic line NIP-NIL-SSIi rice RVA profile than the recurrent parent, found significantly increased the peak viscosity, hot paste viscosity decreased significantly, the breakdown value increased significantly. This also implies that the difference between Indica and Japonica Rice Quality in Wx major gene effects, and SS The variation of I alleles are related to.DSC analysis shows that the variation of SSI alleles leads to the onset temperature decreased significantly, showed early gelatinization, and peak viscosity, stop time, heat Han value compared with the recurrent parent, were not change crystalline variation of a certain degree of decline of.SSI allele caused by starch the degree. The results showed that when the SSIi import Longtefu in Nipponbare, the expression of SSI in near isogenic lines of genes changed, the consequent increase of low molecular weight short chain. This means that the SSI allele distribution function in Indica and japonica rice starch chain length differences, at the same time that a variation of SSI alleles resulted between Indica and Japonica Rice amylopectin structure differences. Based on the above research and the results obtained by a chromosome segment substitution lines in Japonica genetic background in two years under the environment The 14 parameters that affect the physico-chemical quality of the QTL analysis, a total of 35 QTL, of which 5 loci with pleiotropy; starch structure of 3 important families with multiple QTL positioning are analyzed, it provides a good reference for differences in rice quality analysis CSSL; two is the RNAi effect using the transgenic lines and near isogenic lines further in-depth analysis of rice SSI gene in two main allelic variation on rice quality and starch structure.

【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S511

【相似文獻(xiàn)】

相關(guān)期刊論文 前10條

1 馬家璋,R.J.Kohel;棉花六個代換系的評價[J];作物學(xué)報;1983年03期

2 白志英;李存東;孫紅春;趙金鋒;;小麥代換系抗旱生理指標(biāo)的主成分分析及綜合評價[J];中國農(nóng)業(yè)科學(xué);2008年12期

3 田增榮;朱建峰;楊群慧;陳春環(huán);吉萬全;;一種小麥藍(lán)粒標(biāo)記單體代換系4E(6B)的創(chuàng)制[J];麥類作物學(xué)報;2010年05期

4 徐霞;普通小麥異代換系[J];麥類作物學(xué)報;1992年02期

5 吳景科;;重視開發(fā)利用小麥異代換系種質(zhì)[J];甘肅農(nóng)業(yè)科技;1993年01期

6 馬翎健,司美茹,宋喜悅,胡銀剛,奚亞軍,何蓓如,劉曙東;牡山羊草細(xì)胞質(zhì)小麥核代換系酶活性及其與花粉敗育的關(guān)系[J];麥類作物學(xué)報;2001年03期

7 徐潔,陳升位,楊德,何蓓如;粗厚山羊草胞質(zhì)小麥核代換系育性的光溫反應(yīng)[J];山地農(nóng)業(yè)生物學(xué)報;2001年04期

8 田增榮;朱建峰;楊群慧;陳春環(huán);張榮琦;吉萬全;;一種小麥藍(lán)粒標(biāo)記單體代換系4E(5A)的創(chuàng)制[J];西北農(nóng)林科技大學(xué)學(xué)報(自然科學(xué)版);2008年05期

9 田增榮;朱建峰;楊群慧;陳春環(huán);吉萬全;;一種小麥藍(lán)粒標(biāo)記單體代換系4E(3D)的創(chuàng)制[J];西北植物學(xué)報;2008年09期

10 白志英;李存東;趙金鋒;吳同彥;鄭金鳳;畢常銳;;干旱脅迫對小麥代換系葉綠素?zé)晒鈪?shù)的影響及染色體效應(yīng)初步分析[J];中國農(nóng)業(yè)科學(xué);2011年01期

相關(guān)會議論文 前5條

1 張相岐;王獻(xiàn)平;;一種高效創(chuàng)制小麥-黑麥定向代換系的新方法-缺-四體回交法[A];中國的遺傳學(xué)研究——中國遺傳學(xué)會第七次代表大會暨學(xué)術(shù)討論會論文摘要匯編[C];2003年

2 白志英;李存東;孫紅春;;小麥染色體代換系的研究進(jìn)展[A];作物逆境生理研究進(jìn)展——中國作物生理第十次學(xué)術(shù)研討會文集[C];2007年

3 胡利君;李光蓉;劉成;班依蓉;郎濤;宋曉瑾;冉玲;蘇愿;楊足君;;小麥-茸毛偃麥草1St(1D)代換系及其雜交后代的分子細(xì)胞學(xué)分析[A];中國作物學(xué)會50周年慶祝會暨2011年學(xué)術(shù)年會論文集[C];2011年

4 黎波濤;石玉真;劉愛英;王濤;胡玉樞;李俊文;龔舉武;商海紅;鞏萬奎;陳婷婷;袁有祿;;陸海染色體片段代換系鈴重與衣分的雙列雜交分析[A];中國棉花學(xué)會2014年年會論文匯編[C];2014年

5 郭香墨;張永山;欒明寶;姚金波;陳偉;褚麗;劉海菊;;利用陸地棉2個種間代換系進(jìn)行農(nóng)藝和纖維品質(zhì)性狀的QTL定位[A];中國棉花學(xué)會2010年年會論文匯編[C];2010年

相關(guān)博士學(xué)位論文 前3條

1 劉鑫燕;影響稻米理化品質(zhì)微效基因的定位與效應(yīng)解析[D];揚(yáng)州大學(xué);2016年

2 李敏;利用水稻代換系定位種子萌發(fā)速率和品質(zhì)基因[D];華中農(nóng)業(yè)大學(xué);2013年

3 申國境;染色體片段代換系的構(gòu)建及產(chǎn)量相關(guān)性狀雜種優(yōu)勢的遺傳基礎(chǔ)研究[D];華中農(nóng)業(yè)大學(xué);2014年

相關(guān)碩士學(xué)位論文 前10條

1 胡思遠(yuǎn);小麥—濱麥異代換系芽期與苗期抗旱、耐鹽性鑒定評價[D];西北農(nóng)林科技大學(xué);2015年

2 靖姣姣;鹽脅迫對小麥代換系幼苗的影響及染色體效應(yīng)研究[D];河北農(nóng)業(yè)大學(xué);2015年

3 胡靜;小偃麥抗病異代換系的分子細(xì)胞學(xué)鑒定[D];山西大學(xué);2014年

4 吳凡;YSBR1/Lemont染色體片段代換系的構(gòu)建及主效抗紋枯病QTL的精細(xì)定位[D];揚(yáng)州大學(xué);2015年

5 施衛(wèi)萍;小麥染色體片段代換系的構(gòu)建以及相關(guān)農(nóng)藝性狀的QTL初步鑒定[D];揚(yáng)州大學(xué);2015年

6 李燕;含有主效紫鞘基因的水稻染色體片段代換系Z519的鑒定及PSH1定位[D];西南大學(xué);2016年

7 鄭金鳳;小麥代換系耐低磷特性的染色體效應(yīng)研究[D];河北農(nóng)業(yè)大學(xué);2010年

8 米少艷;低磷脅迫對小麥染色體代換系幼苗的生理效應(yīng)及其染色體定位研究[D];河北農(nóng)業(yè)大學(xué);2013年

9 王嘉瑞;普通小麥—中間偃麥草抗條銹病異代換系的選育與鑒定[D];河北農(nóng)業(yè)大學(xué);2008年

10 任永康;小偃麥異代換系的分子細(xì)胞遺傳學(xué)鑒定[D];山西大學(xué);2007年



本文編號:1458608

資料下載
論文發(fā)表

本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1458608.html


Copyright(c)文論論文網(wǎng)All Rights Reserved | 網(wǎng)站地圖 |

版權(quán)申明:資料由用戶15e63***提供,本站僅收錄摘要或目錄,作者需要刪除請E-mail郵箱bigeng88@qq.com