珍珠貝貝殼蛋白組學(xué)及脅迫環(huán)境下的應(yīng)激調(diào)控網(wǎng)絡(luò)
本文關(guān)鍵詞:珍珠貝貝殼蛋白組學(xué)及脅迫環(huán)境下的應(yīng)激調(diào)控網(wǎng)絡(luò) 出處:《中國科學(xué)院研究生院(海洋研究所)》2016年博士論文 論文類型:學(xué)位論文
更多相關(guān)文章: 合浦珠母貝 蛋白質(zhì)組 生物礦化 WGCNA 環(huán)境脅迫
【摘要】:生物礦化(biomeralization)是指在生物有機(jī)大分子(主要是蛋白質(zhì)、糖蛋白或多糖)調(diào)控下,在生物體特定部位有序沉積形成礦物晶體(生物礦物)的過程。軟體動物的貝殼則是生物礦物典型的代表。由于珍珠貝(包括海水和淡水)可分泌形成質(zhì)地堅(jiān)硬、色彩斑斕、熠熠生輝的文石結(jié)晶層,而被利用于培育有核或無核珍珠。合浦珠母貝Pinctada fucata martensii是中國及日本等國家最主要的海水育珠貝,其所產(chǎn)珍珠史稱“南珠”。本研究基于合浦珠母貝全基因組序列全基因組序列精細(xì)圖譜,通過檢測和分析貝殼珍珠層與棱柱層的基質(zhì)蛋白(家族),探討貝殼結(jié)晶層的形成分子機(jī)制;并利用WGCNA的方法構(gòu)建了貝殼蛋白在非生理?xiàng)l件下的應(yīng)激網(wǎng)絡(luò)。由于珍珠貝珍珠層與珍珠在物質(zhì)組成、形成過程的相似性,該研究對于理解珍珠貝珍珠形成的機(jī)制及珍珠品質(zhì)的改善也都有一定的借鑒意義。具體的研究結(jié)果如下:1.合浦珠母貝貝殼蛋白組學(xué)研究基于合浦珠母貝全基因組序列精細(xì)圖譜,本研究利用高效液相色譜串聯(lián)質(zhì)譜電噴霧檢測技術(shù)(LC-ESI-MS/MS)分別獲得棱柱層的酸不溶蛋白(PI)、可溶性蛋白(PS)、珍珠層不溶性蛋白(NI)和可溶性蛋白(NS)各207、109、199和120種,其中有78個(gè)為已知功能的。分別計(jì)算四組蛋白中含量最高的20種蛋白,結(jié)果發(fā)現(xiàn)四組樣品共有的高含量基質(zhì)蛋白為酪氨酸酶(Tyrosinase,Tyr)、類纖連蛋白(Fibronectin-like protein,FLP)和N19。棱柱層與珍珠層基質(zhì)蛋白含低復(fù)雜性區(qū)域(related low complexity domain,RLCD)蛋白,或稱天然無序蛋白(intrinsically disordered proteins,IDP)。四個(gè)樣品中,已報(bào)道的珍珠層基質(zhì)蛋白均被檢測到,但含量存在較大的差異,如N19和nacrein等。相同的情況也發(fā)生于已知棱柱層特有的蛋白,如Tyr和FLP。結(jié)晶層基質(zhì)蛋白編碼基因的組織表達(dá)數(shù)據(jù)顯示,多個(gè)組織都存在一定的貢獻(xiàn)率,而非傳統(tǒng)的認(rèn)識外套膜不同分區(qū)特異表達(dá)確定其結(jié)晶層特有蛋白。不同的結(jié)晶層雖然有其特有的基質(zhì)蛋白,但含量較高的功能基質(zhì)蛋白,一般同時(shí)存于兩種結(jié)晶層,基質(zhì)蛋白的水平差異可能是選擇不同結(jié)晶形態(tài)的主要因素。另外,在基因組數(shù)據(jù)基礎(chǔ)上,比較三種貝類(pinctadafucatamartensii、lottiagigantea和crassostreagigas)的貝殼基質(zhì)蛋白,結(jié)果顯示,單拷貝基因家族中的碳酸酐酶(carbonicanhydrase,ca)在貝殼中已經(jīng)分化出新的功能基因(nacrein)。tyr家族有些成員在三個(gè)物種中都能找到同源基因,且在合浦珠母貝中為多拷貝基因,而部分成員則僅在長牡蠣中找到同源基因,說明tyr在序列上已經(jīng)發(fā)生明顯分化,這與貝類tyr家族進(jìn)化分析的結(jié)果相吻合。多種ecm在貝殼中含量豐富,暗示ecm在貝殼礦化中起重要的作用。2.貝殼基質(zhì)蛋白(家族)序列分析、同源建模與功能預(yù)測對貝殼蛋白中重要的基質(zhì)蛋白(家族)tyr、flp和idps進(jìn)行了序列和功能分析。分別克隆獲得2個(gè)合浦珠母貝和10個(gè)長牡蠣tyr家族成員的全長。本研究主要關(guān)注合浦珠母貝和長牡蠣貝殼中的tyr成員,其序列特征以及含量分析顯示,tyr的pi值可能對其在貝殼中的功能有重要的相關(guān)性。對貝類及其他物種已知的tyr家族進(jìn)行進(jìn)化分析,結(jié)果顯示合浦珠母貝和長牡蠣tyr都單獨(dú)進(jìn)化成一支,進(jìn)一步表明兩個(gè)物種以及物種內(nèi)功能可能已經(jīng)發(fā)生了分化。同源建模后獲得催化活性中心關(guān)鍵氨基酸具體的位置信息,并分析其與酶活性之間的關(guān)系。合浦珠母貝的flps序列與結(jié)構(gòu)分析結(jié)果顯示,含4個(gè)fniii結(jié)構(gòu)域,內(nèi)含氨基酸重復(fù)差異較大,二級結(jié)構(gòu)顯示都可形成典型的β折疊,但都缺乏重要的與細(xì)胞結(jié)合的功能結(jié)構(gòu)域rgd,暗示著與細(xì)胞結(jié)合的功能的缺少。單個(gè)fniii結(jié)構(gòu)域的進(jìn)化分析顯示,貝殼flps中fniii與高等動物的酪氨酸磷酸酯酶(proteintyrosinephosphatase,ptp)具有較高的同源性,暗示著可能存在相似的功能。合浦珠母貝貝殼中的idps在四個(gè)樣品中種類以及豐度占較大的比例。在全基因組水平上,對比3個(gè)貝類物種合浦珠母貝、長牡蠣和帽貝貝殼中idps占所有貝殼基質(zhì)蛋白的比例,平均比例分別為28.53%,15.55%和26.64%。發(fā)現(xiàn)在3個(gè)物種的特有貝殼基質(zhì)蛋白含量較平均水平高,分別為34.23%、18.52%和34.62%。合浦珠母貝的多拷貝直系同源中含量也達(dá)到了33.33%,主要原因?yàn)榧?xì)胞外基質(zhì)(ecm)的組分較多。通過比對發(fā)現(xiàn)珠母貝屬珍珠層和棱柱層IDPs同源性極高,如珍珠層基質(zhì)蛋白MRMP34,NUSP1/2/5/7/8/9和棱柱層PUSP2/8/10。通過網(wǎng)上IDP比對工具,發(fā)現(xiàn)pearlin(N16)、nacrien和MSI60都含有鮑珍珠層特有基質(zhì)蛋白AP7結(jié)晶結(jié)合位點(diǎn)基序DDNGN。因此推斷文石晶體成核的功能基因通過成核基序(motif)維持其保守性,并以模塊化形式發(fā)揮作用。3.采用共表達(dá)網(wǎng)絡(luò)分析法(WGCNA)構(gòu)建合浦珠母貝高溫、酸化脅迫下的應(yīng)激調(diào)控網(wǎng)絡(luò)從NCBI網(wǎng)站CEO數(shù)據(jù)庫中,獲取在高溫和海水酸化脅迫下合浦珠母貝外套膜基因表達(dá)數(shù)據(jù)。利用共表達(dá)網(wǎng)絡(luò)分析法(WGCNA)篩選出在上述脅迫下影響顯著的基因模塊,并對模塊中包含的基因進(jìn)行功能富集;同時(shí)將貝殼蛋白在各個(gè)模塊的分布情況進(jìn)行統(tǒng)計(jì),并分析貝殼蛋白與hub-gene的關(guān)聯(lián)性,構(gòu)建礦化基因的應(yīng)激網(wǎng)絡(luò)。結(jié)果表明,高溫顯著響應(yīng)模塊基因富集結(jié)果顯示細(xì)胞骨架蛋白基因,如ARHGEF4、SAP和myosin都發(fā)生了顯著的變化,而這些基因主要與細(xì)胞遷移關(guān)系密切。另外,該模塊中受影響的信號通路基因較多,包含熱激蛋白,主要受影響的基因是膜受體蛋白,說明細(xì)胞對溫度應(yīng)答較復(fù)雜。酸化應(yīng)答模塊共5個(gè),響應(yīng)的基因包括呼吸相關(guān)的血紅素A合成酶、芳香族氨基酸代謝相關(guān)的酶、鈣粘蛋白和血小板反應(yīng)蛋白等。同時(shí),本研究關(guān)注的礦化基因也在高溫應(yīng)答模塊中富集,其中包括Tyr、FLP等重要的礦化基因,說明這些礦化基因?qū)囟容^為敏感。為研究這些礦化基因與其他基因的關(guān)聯(lián)性,本研究構(gòu)建了基因共表達(dá)網(wǎng)絡(luò),結(jié)果顯示鈣離子結(jié)合蛋白、細(xì)胞骨架蛋白、蛋白質(zhì)糖基化相關(guān)的基因關(guān)系密切。在實(shí)驗(yàn)室模擬海洋酸化條件下,測定了3個(gè)珍珠層基質(zhì)蛋白編碼功能基因的表達(dá)量變化以及貝殼晶體形貌的變化,結(jié)果顯示這些基因的表達(dá)受不同程度的影響,珍珠層也出現(xiàn)非正常晶體形貌特征。
[Abstract]:Biomineralization (biomeralization) refers to the biological macromolecules (mainly protein, glycoprotein or polysaccharide) under the control of the formation of mineral crystals in specific parts of organisms (bio minerals) and orderly deposition process. The software is animal shells biominerals typical representative. The Pearl Oyster (including seawater and freshwater) can secrete the formation of hard texture, colorful, shiny aragonite crystal layer, which is used to develop nuclear or non nuclear. Hepu Pinctada fucata martensii pearl nacre is China and Japan and other countries the main activities for the production of seawater pearl, known as the "pearl pearl". This research is based on the complete genome sequence of the whole genome sequence from Hepu fine mapping, detection and analysis of the nacre and prismatic layer matrix protein (family), to investigate the molecular mechanism of the formation of crystalline shell layer; and using the WGCNA method to construct Shell network stress protein in non physiological conditions. The Pearl Oyster nacre and pearl in material composition, the formation of similar process, the research for understanding the mechanism of the formation of pearl oyster pearl and pearl quality improvement also have certain reference significance. The results are as follows: 1. Hepu pearl shell proteomics full Hepu fine map based on the genome sequence of nacre, using chromatography electrospray tandem mass spectrometry detection technology on the high performance liquid (LC-ESI-MS/MS) were obtained for the prismatic layer of acid insoluble protein (PI), soluble protein (PS), pearl layer of insoluble protein (NI) and soluble protein (NS) in 207109199 and 120. There are 78 known functions were calculated in four groups. In 20 the highest protein protein, the results showed that four samples all have a high content of matrix protein for tyrosinase (Tyrosinase, Tyr), type of fiber Fibronectin (Fibronectin-like protein, FLP) and N19. prismatic layer and pearl layer matrix protein containing a low complexity region (related low complexity domain, RLCD) protein, or natural protein (intrinsically disordered proteins, order IDP). Four samples of nacre matrix proteins have been reported to have been detected, but there is a big differences in content, such as N19 and nacrein. The same situation also occurs in the known prismatic layer specific proteins, such as Tyr and FLP. crystal layer matrix protein encoding gene expression data show that many organizations have a certain contribution rate, rather than the traditional understanding of the mantle in different areas of specific expression to determine the crystal layer the specific proteins of different crystalline layer. Although its unique matrix protein, but the function of matrix protein content high, generally stored in two kinds of crystal layer, differences in the level of matrix protein may choose not to The main factors with the crystal morphology. In addition, the genomic data based on the comparison of three kinds of shellfish (pinctadafucatamartensii, lottiagigantea and crassostreagigas) shell matrix protein, results showed that single copy gene family of carbonic anhydrase (carbonicanhydrase, CA) in the shell has been divided into new functional genes (nacrein).Tyr some members of the family are homologues can be found in the three species, and in Hepu for a multi copy gene from the members, and only in the oyster found homologous genes, indicating that Tyr has obvious differentiation in sequence, and the analysis of shellfish Tyr family evolution results. Many ECM are abundant in the shell, suggesting that ECM plays an important role in the mineralization of.2. shell matrix protein shell (family) in sequence analysis, homology modeling and functional prediction of important protein in shell matrix protein (family) Tyr, FLP and IDPs were analyzed. The full-length sequence and function were cloned from 2 Hepu and 10 oyster Pinctada Tyr family members. The members of the Tyr research mainly focus on Hepu and oyster shell nacre and its sequence characteristics and content analysis showed that the Tyr pI value may have important relevance to the shell of shellfish and other functions. The species known Tyr family by phylogenetic analysis, the results show that the Hepu pearl oyster Tyr separately and evolved into a further two, showed that the species and function may have occurred after differentiation. Homology modeling of location information for the catalytic center of key amino acid specific. And analyze the relationship between enzyme activity and FLPs sequence and structure analysis of Hepu p.martensii shows that containing 4 FNIII domains containing amino acid repeat differences, two level structure The icons are formed typical beta sheet, but with a lack of important cell binding domain RGD, implying lack of binding to cells. The function of a single FNIII domain evolution analysis showed that tyrosine phosphatase FNIII and higher FLPs in animal shells (proteintyrosinephosphatase, PTP) with high homology. Implies that may have similar functions in the shell IDPs. Hepu Pinctada species in four samples and the abundance accounted for a large proportion. At the genomic level, comparison of 3 shellfish species in Hepu IDPs fucata, oyster shells and limpets accounted for all shell matrix protein ratio, average ratio was 28.53% and 15.55%. 26.64%. was found in 3 species of endemic shell matrix protein content higher average, respectively 34.23%, 18.52% and 34.62%. from the Hepu multicopy orthologous content reached 33.33%, the main reason for the extracellular matrix (ECM) components more. Compared with that of Pearl Oyster Pinctada and prismatic layer of IDPs high homology, such as nacre matrix protein MRMP34, NUSP1/2/5/7/8/9 and PUSP2/8/10. IDP prismatic layer through online comparison tools, Pearlin (N16), nacrien and MSI60 have abalone nacre the unique crystal matrix protein AP7 binding site motif DDNGN. therefore infer aragonite crystals into functional gene through nucleation motif (motif) and to maintain its conservative, modular forms play a role by.3. co expression network analysis method (WGCNA) from the construction of Hepu high temperature stress, acid stress regulatory network from the NCBI website in the CEO database, obtained under the stress of Hepu mantle of P. in high temperature and acidification of gene expression data. The co expression network analysis method (WGCNA) was screened in the stress effect The gene module, and module contains the gene function and protein enrichment; shell statistical distribution in each module, and correlation analysis of shell protein and hub-gene gene, construct the mineralization network. The results show that the high temperature stress, significant response module gene enrichment results show cytoskeletal protein genes, such as ARHGEF4. SAP and myosin have undergone significant changes, and these genes are closely related with cell migration. In addition, more affected by signaling genes in the module, including heat shock protein, mainly affected by the gene is that cell membrane receptor protein complex to the temperature response. The acidification response module 5, response the respiratory related genes including heme A synthase, aromatic amino acid metabolism related enzymes, E-cadherin and thrombospondin. At the same time, this research also mineralized gene In the high temperature response module in enrichment, including Tyr, FLP and other important mineralization genes, indicating that these mineralization genes are sensitive to temperature. For the relevance of these mineralized genes and other genes, this study constructed a gene co expression network, results showed that the calcium binding protein, cytoskeletal protein, protein glycosylation related the gene is closely related to ocean acidification conditions. Simulation in the laboratory, the change of the expression of 3 protein encoding genes of nacre matrix and crystal morphology change shells were determined. The results showed that these gene expression was affected by different degree, pearl layer also appeared abnormal crystal morphology.
【學(xué)位授予單位】:中國科學(xué)院研究生院(海洋研究所)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:S917.4
【參考文獻(xiàn)】
相關(guān)期刊論文 前10條
1 饒科;黃明堅(jiān);章逃平;林尚書;岳曉彩;黃建榮;黎祖福;;鹽度與pH對3種南方貝類呼吸率和鈣化率的影響[J];水生態(tài)學(xué)雜志;2014年04期
2 王有基;李麗莎;李瓊珍;呂為群;;海洋酸化和全球變暖對貝類生理生態(tài)的影響研究進(jìn)展[J];生態(tài)學(xué)報(bào);2014年13期
3 王慶志;李石磊;付成東;張明;滕煒鳴;劉忠穎;劉衛(wèi)東;李文姬;譚克非;;蝦夷扇貝耐高溫育種家系的建立與早期篩查[J];水產(chǎn)學(xué)報(bào);2014年03期
4 于雪;于紅;孔令鋒;李琪;;太平洋牡蠣酪氨酸酶基因家族的系統(tǒng)發(fā)生分析[J];遺傳;2014年02期
5 丁兆坤;李虹輝;許友卿;;海洋酸化對海洋生物呼吸代謝的影響及機(jī)制[J];飼料工業(yè);2012年20期
6 李莉;許飛;張國范;;水產(chǎn)動物基因資源和分子育種的研究與應(yīng)用[J];中國農(nóng)業(yè)科技導(dǎo)報(bào);2011年05期
7 何盛毅;林傳旭;何毛賢;嚴(yán)巖;;海洋酸化對馬氏珠母貝胚胎和早期幼蟲發(fā)育的影響[J];生態(tài)學(xué)雜志;2011年04期
8 徐東;張繼紅;王文琪;杜美榮;任黎華;王忠;;溫度變化對蝦夷扇貝耗氧率和排氨率的影響[J];中國水產(chǎn)科學(xué);2010年05期
9 黃永棋;劉志榮;;天然無序蛋白質(zhì):序列-結(jié)構(gòu)-功能的新關(guān)系[J];物理化學(xué)學(xué)報(bào);2010年08期
10 陳浩,朱晟,陳良標(biāo);3大種群蛋白質(zhì)內(nèi)部重復(fù)片段組成規(guī)律的比較研究[J];遺傳學(xué)報(bào);2005年03期
相關(guān)博士學(xué)位論文 前1條
1 張岑;合浦珠母貝貝殼形成相關(guān)蛋白及基因的研究[D];清華大學(xué);2006年
相關(guān)碩士學(xué)位論文 前1條
1 賁月;蝦夷扇貝應(yīng)答高溫變化的相關(guān)生理生態(tài)學(xué)研究[D];大連海洋大學(xué);2013年
,本文編號:1410168
本文鏈接:http://sikaile.net/shoufeilunwen/nykjbs/1410168.html