基于差異調控分析探究胃癌形成過程中轉錄因子和microRNA的異常調控機制
本文選題:胃癌 切入點:復合基因調控網絡 出處:《華東理工大學》2017年碩士論文 論文類型:學位論文
【摘要】:胃癌(GastricCancer,GC)是全世界范圍內發(fā)病率和死亡率最高的癌癥類型之一。盡管已經鑒定出很多與胃癌相關的基因(gene)和microRNA(miRNA),但它們在系統(tǒng)層面的作用機理仍然不清楚。為了在系統(tǒng)層面探究胃癌形成過程中的異常調控機制,本課題建立了用來識別癌癥相關調控關系的方法,該方法創(chuàng)造性地整合了差異調控、差異表達及調控子(Regulator)對靶基因調控效應三方面的信息,并將該方法用于胃癌組學數據研究胃癌發(fā)生發(fā)展的機制。本課題基于TCGA胃癌mRNA和miRNA表達數據,首先用差異共表達分析(Differential Coexpression Analysis,DCEA)策略獲得一組在正常和癌癥狀態(tài)之間表達水平的相關性發(fā)生顯著變化的gene和miRNA(gene/miRNA),并用這些gene/miRNA分別構建正常和癌癥條件下包含轉錄因子(Transcriptional Factor,TF)和miRNA的條件特異的復合基因調控網絡(combinational Gene Regulatory Network,cGRN),發(fā)現條件特異的cGRN能顯著富集已知的癌癥相關的gene/miRNA;然后建立了度量不同條件下調控關系差異的方法,發(fā)現該方法能將癌癥相關的gene/miRNA顯著地排在前面,并用該方法篩選調控強度發(fā)生顯著變化的調控關系;隨后,通過整合差異調控、差異表達及Regulator對靶基因因的調控效應三方面的信息定義了差異調控關系(Differentially Regulated Link,DRL);最后,通過整合DRL及臨床生存時間數據,篩選出三個關鍵的Regulator,TCF7L1、TCF4和MEIS1。圍繞這三個Regulator,及其相關的DRL,結合文獻信息,在系統(tǒng)水平上提出了一個胃癌發(fā)生的異常調控機制假說。在該項研究中,miRNA微調效應在系統(tǒng)層面被觀察到。此外,本課題還將差異調控分析方法應用到中國人胃癌表達譜數據GSE54129中,對癌癥和癌旁之間的差異調控基因(Differentially Regulated Genes,DRG)和差異調控關系(DRL)排序。從計算的結果中選取排在最靠前的一個TF CREB1,及兩個靶基因TCEAL2和MBNL1,用分子生物學實驗重現了預測的這兩個調控關系在正常和癌癥條件下的差異調控結果。本課題提出的胃癌機制假說能為今后的研究提供指導,構建的差異調控分析策略還可以用于探索其它復雜疾病以及表型變化現象背后的基因表達調控機制。
[Abstract]:Gastric cancer is one of the most common cancer types with the highest morbidity and mortality in the world. Although many genes related to gastric cancer gene genetics and microRNAs miRNAs have been identified, the mechanism of their action at the system level is still unclear. To explore the mechanism of abnormal regulation in the formation of gastric cancer, In this study, a method was developed to identify cancer-related regulatory relationships. This method creatively integrates information on differential regulation, differential expression and regulatory effects of regulators on target genes. The method was used to study the mechanism of gastric carcinogenesis and development in gastric cancer. This study was based on mRNA and miRNA expression data of TCGA gastric cancer. First, differential Coexpression Analysis (DCEA) strategy was used to obtain a group of gene and miRNAgene / miRNAs with significantly different expression levels between normal and cancer states, and these gene/miRNA were used to construct transcription factors under normal and cancer conditions, respectively. The combined Gene Regulatory Network (CGRN) and the conditional specific gene regulatory network of miRNA found that conditional cGRN significantly enriched known cancer-related gene / miRNAs, and then established a method to measure differences in regulatory relationships under different conditions. It was found that this method can significantly rank the cancer related gene/miRNA in the first place, and screen out the regulatory relationships with significant changes in regulatory intensity by using this method, and then, by integrating differential regulation, Differential expression and the regulatory effect of Regulator on target gene cause define differential Regulated link DRL. Finally, by integrating DRL and clinical survival time data, Three key Regulators, TCF7L1, TCF4 and MEIS1, were screened around the three Regulators, and their associated DRLs, combined with literature information, A hypothesis of abnormal regulatory mechanism for gastric carcinogenesis has been proposed at the systemic level. In this study, the effect of miRNA fine-tuning was observed at the systemic level. The method of differential regulation analysis was also applied to Chinese gastric cancer expression profile data GSE54129. The differential Regulated genes (DRGs) and differential regulatory relationships (DRLs) were sequenced between cancer and adjacent cancer. The TF CREB1, two target genes TCEAL2 and MBNL1 were selected from the calculated results, and predicted by molecular biological experiments. The results of these two regulatory relationships are different in normal and cancer conditions. The hypothesis of gastric cancer mechanism proposed in this paper can provide guidance for future research. The strategy can also be used to explore the gene expression regulation mechanism behind other complex diseases and phenotypic changes.
【學位授予單位】:華東理工大學
【學位級別】:碩士
【學位授予年份】:2017
【分類號】:R735.2
【共引文獻】
相關期刊論文 前10條
1 宮秀芬;;提升遼寧省物流增值服務水平策略[J];黨政干部學刊;2017年07期
2 李斐;;基于供應鏈的企業(yè)物流整合策略研究[J];中小企業(yè)管理與科技(下旬刊);2017年05期
3 曹曄;;構建草原絲綢之路經濟帶框架下內蒙古物流企業(yè)提升增值服務策略研究[J];物流科技;2017年03期
4 李玉鳳;邢淋淋;;智慧供應鏈績效評價指標體系構建[J];統(tǒng)計與決策;2017年03期
5 孔祥統(tǒng);;基于供應鏈整合的兩煙物流一體化模式研究[J];科技和產業(yè);2016年12期
6 寇光濤;盧鳳君;王文海;;新常態(tài)下農業(yè)產業(yè)鏈整合的路徑模式與共生機制[J];現代經濟探討;2016年09期
7 劉怡君;;典型有色金屬企業(yè)供應鏈整合驅動機制研究[J];生態(tài)經濟;2016年07期
8 楊利軍;;基于供應鏈協同的物流增值服務研究[J];商業(yè)經濟研究;2016年10期
9 楊茂盛;王陽;;制造企業(yè)內部供應鏈管理的優(yōu)化[J];物流技術;2015年19期
10 文風;成龍;馮華;;供應鏈社會資本對供應鏈整合影響的實證研究[J];科技進步與對策;2015年22期
相關碩士學位論文 前10條
1 石芳菲;第三方物流公司的供應鏈整合研究[D];華東理工大學;2017年
2 楊莉;南方航空貴州公司物流業(yè)務模式研究[D];貴州大學;2016年
3 周楊;云南NG工業(yè)園區(qū)企業(yè)供應鏈整合影響因素及方案研究[D];昆明理工大學;2016年
4 劉洪剛;基于供應鏈整合的CY物流公司業(yè)務重組項目研究[D];吉林大學;2013年
5 雷鳴;第三方物流企業(yè)個性化服務質量評價研究[D];浙江理工大學;2013年
6 李金蓉;重慶保稅港區(qū)第三方物流運作模式研究[D];重慶理工大學;2013年
7 張博;H公司手機物流項目風險管理研究[D];吉林大學;2013年
8 袁樹威;MG物流公司保稅物流業(yè)務模式構建研究[D];華南理工大學;2012年
9 何一帆;重組型企業(yè)整合階段的薪酬模式研究[D];吉林大學;2012年
10 孟丹丹;第三方物流資源整合能力評價與供應鏈管理運作模式選擇研究[D];天津財經大學;2012年
,本文編號:1616351
本文鏈接:http://sikaile.net/shoufeilunwen/mpalunwen/1616351.html