房地產(chǎn)市場非對(duì)稱及厚尾相依性研究
本文選題:房地產(chǎn)市場 切入點(diǎn):Copula-GARCH模型 出處:《華中科技大學(xué)》2016年博士論文 論文類型:學(xué)位論文
【摘要】:2015年,全球經(jīng)濟(jì)維持“弱增長”格局,仍延續(xù)曲折性與脆弱性并舉的調(diào)整恢復(fù)期。貨幣基金組織最新發(fā)布的《世界經(jīng)濟(jì)展望》指出,全球經(jīng)濟(jì)當(dāng)前正面臨著不可忽視的下行風(fēng)險(xiǎn),這會(huì)直接影響全球經(jīng)濟(jì)未來的發(fā)展。隨著世界經(jīng)濟(jì)一體化的進(jìn)程,資本的自由流動(dòng)和國際間貿(mào)易的聯(lián)系益發(fā)密切,全球金融市場及經(jīng)濟(jì)體之間已呈現(xiàn)出愈發(fā)明顯的相依性,區(qū)域內(nèi)金融市場的波動(dòng)也日趨受到區(qū)域外其他金融市場不確定性的影響。金融市場間的時(shí)變相依性的存在不可避免地也會(huì)對(duì)投資組合的風(fēng)險(xiǎn)管理與資產(chǎn)定價(jià)產(chǎn)生影響,并對(duì)政策制定者提出更高的挑戰(zhàn)。能否準(zhǔn)確的刻畫和預(yù)測全球金融市場間的動(dòng)態(tài)相依性特征,對(duì)引導(dǎo)資金的跨市場流動(dòng)和資源配置、市場參與主體的投資策略制定、監(jiān)管機(jī)制的政策制定及實(shí)施等問題均具有重要的現(xiàn)實(shí)意義。同國際股票市場的相依性一樣,國際房地產(chǎn)市場間相依性結(jié)構(gòu)也有動(dòng)態(tài)性、非對(duì)稱性以及尾部相依的特征。傳統(tǒng)的金融工具之間的整體相依性通常是通過皮爾森線性相關(guān)性系數(shù)來刻畫。但是,近年來,這個(gè)方法受到來自學(xué)術(shù)界和業(yè)界研究人員大量的批評(píng),根本原因在于它無法刻畫非線性的相依性結(jié)構(gòu)。而Copula模型能夠很好的彌補(bǔ)線性相關(guān)系數(shù)的缺陷,也能夠同時(shí)對(duì)動(dòng)態(tài)性、非對(duì)稱性和尾部相依結(jié)構(gòu)進(jìn)行建模。因此,本文在Copula框架下,融合GARCH模型,對(duì)全球多個(gè)房地產(chǎn)市場的動(dòng)態(tài)、非對(duì)稱相依性和尾部相依性展開研究。首先,本文在國際上研究相依性的先進(jìn)技術(shù)框架下,通過結(jié)合Copula模型和ARMA-GJR-GARCH模型,研究了包括房地產(chǎn)非對(duì)稱相依性在內(nèi)的三種非對(duì)稱性。本文分別采用ARMA-GJR-GARCH模型來捕捉房地產(chǎn)市場的非對(duì)稱波動(dòng),采用偏斜t分布擬合非對(duì)稱的邊際分布,最后通過GARCH模型和動(dòng)態(tài)Copula模型結(jié)合,來刻畫房地產(chǎn)市場非對(duì)稱的時(shí)變相依性結(jié)構(gòu)。實(shí)證結(jié)果表明,美國和英國房地產(chǎn)市場之間的相關(guān)性最強(qiáng),并且呈顯著增強(qiáng)趨勢。其次,針對(duì)房地產(chǎn)市場的非對(duì)稱相依性特征,本文基于三種動(dòng)態(tài)Copula模型,結(jié)合風(fēng)險(xiǎn)管理模型,在動(dòng)態(tài)Copula-VaR框架下預(yù)測房地產(chǎn)投資組合的在險(xiǎn)價(jià)值,揭示非對(duì)稱相依性結(jié)構(gòu)的風(fēng)險(xiǎn)管理意義。實(shí)證結(jié)果表明,如果投資者忽略極值聯(lián)動(dòng)會(huì)低估投資組合的預(yù)期風(fēng)險(xiǎn),導(dǎo)致更大的損失;同時(shí)對(duì)稱的t模型得到的房地產(chǎn)資產(chǎn)投資組合的VaR值也比非對(duì)稱的旋轉(zhuǎn)Gumbel模型得到的VaR要更低。因此,如果在橢圓相關(guān)性的假設(shè)下會(huì)導(dǎo)致風(fēng)險(xiǎn)管理者對(duì)風(fēng)險(xiǎn)的低估。第三,基于極值理論和尾部相依性,分析極值事件(金融危機(jī))對(duì)房地產(chǎn)市場間相依的影響。通過分析次貸危機(jī)前、危機(jī)期和危機(jī)后七個(gè)國際房地產(chǎn)市場的尾部相依性,考察了金融危機(jī)對(duì)房地產(chǎn)市場相依性、及房地產(chǎn)與一般金融市場間相依性的影響。實(shí)證結(jié)果顯示,2008年后,幾乎所有的國際房地產(chǎn)市場之間都從尾部不相依轉(zhuǎn)變成了尾部相依。而這種較強(qiáng)的相依性并沒有隨著全球經(jīng)濟(jì)的逐漸恢復(fù)而變?nèi)?由此揭示金融危機(jī)對(duì)全球房地產(chǎn)證券市場的影響是非常深遠(yuǎn)的。最后,本文基于動(dòng)態(tài)SJC Copula-GARCH-t模型,對(duì)中國房地產(chǎn)和股票市場間的動(dòng)態(tài)尾部相依性進(jìn)行了建模和分析。實(shí)證結(jié)果顯示,中國房地產(chǎn)-股票市場間的尾部相依性一直保持在高位水平,并且受到金融危機(jī)和歐債危機(jī)的影響較為有限。這與其他國家的房地產(chǎn)-股票市場間的實(shí)證結(jié)果有非常大的差異。可以說,來自國際市場的極值事件對(duì)中國市場的沖擊并不強(qiáng)烈。
[Abstract]:In 2015, the global economy remained weak growth pattern, continue twists and vulnerability and the adjustment of the recovery period. The IMF's latest world economic outlook < > pointed out that the global economy is facing downside risks can not be ignored, which directly affects the development of the global economy with the world economy in the future. The process of integration, the free flow of international capital and trade links between the global financial market more closely, and the economy has shown more obvious dependence, regional financial market volatility is also affected by other regional financial market uncertainties. The time-varying dependence between financial markets are inevitably the also on the portfolio risk management and asset pricing impact, and put forward higher challenge to policy making. The ability to accurately describe and predict the global financial markets The characteristics of the dynamic dependencies, to guide the fund flow across the market and the allocation of resources, develop market participants investment strategy, the regulatory mechanism of the policy formulation and implementation and other issues have important practical significance. As the dependence of the international stock market, international real estate market dependence between structure and dynamic characteristics. Asymmetric and tail dependence. The overall dependence between traditional financial instruments of is usually described by Pearson linear correlation coefficient. However, in recent years, this method suffers from academic and industry researchers a lot of criticism, the fundamental reason is that the dependence of the structure. And it can not describe the nonlinear Copula model can good to make up for the defect of linear correlation coefficient, is also on the dynamic, asymmetric and tail dependence structure is modeled. Therefore, in this paper, under the framework of Copula, fusion The GARCH model, the dynamic of the global number of the real estate market, asymmetric dependence and tail dependence is studied. Firstly, this paper studies the advanced technology framework of dependence in the world, by combining the Copula model and ARMA-GJR-GARCH model are studied, including the real estate of the asymmetric three asymmetric dependence,. Asymmetric Volatility we use the ARMA-GJR-GARCH model to capture the real estate market, the marginal distribution of the skew t distribution fitting asymmetric, finally through the combination of GARCH model and dynamic Copula model to describe the real estate market asymmetric time-varying dependence structure. The empirical results show that the correlation between the United States and the British real estate market, and showed a significant increasing trend. Secondly, the asymmetric dependence on the real estate market characteristics, the three kinds of dynamic Copula model based on the combination of risk management in the model. Under the framework of Copula-VaR dynamic prediction of real estate portfolio value at risk, reveal the asymmetric dependence structure of the meaning of risk management. The empirical results show that, if investors ignore the expected risk of extreme linkage portfolio could be underestimated, leading to greater losses; at the same time, the symmetrical t model get a real estate asset portfolio value VaR non symmetric rotating Gumbel models get VaR to lower. Therefore, if the relationship between elliptic under the assumption that will lead to the risk management of underpricing of risk. Third, the dependence of extreme value theory and based on the analysis of extreme value event tail, (financial crisis) on the real estate market dependence effect. Through the analysis of the subprime crisis. The period of crisis and crisis after the end of seven the international real estate market dependence, effects of financial crisis on the real estate market dependence, and real estate and financial markets according to the phase of Impact. The empirical results show that, after 2008, almost all of the international real estate market is not dependent from the tail into the tail dependence. This dependence is not strong with the gradual recovery of the global economy becomes weak, thus revealing the impact of financial crisis on the global real estate securities market is very far-reaching. Finally, the dynamic SJC Copula-GARCH-t model based on dynamic tail China real estate and the stock market's dependence is modeled and analyzed. The empirical results show that the tail of China real estate stock market dependence has been maintained at a high level, and are influenced by the financial crisis and the European debt crisis is relatively limited empirical. This and other countries of the real estate and stock market results have very big difference. It can be said that no strong impact of extreme events from the international market for China market.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:F299.23;F832.51;F224
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王少平;孫曉濤;;中國通貨膨脹的相依性周期[J];中國社會(huì)科學(xué);2013年05期
2 吳武清;毛志杰;李楠;潘松;陳敏;;中國進(jìn)口和出口的相依性:時(shí)變相關(guān)系數(shù)方法[J];管理工程學(xué)報(bào);2014年01期
3 ;“智慧點(diǎn)亮生活”:我們對(duì)科技到底有多依賴[J];中國新時(shí)代;2005年03期
4 王偉;鄒捷中;唐勝達(dá);;投資收益相依性的風(fēng)險(xiǎn)模型[J];數(shù)學(xué)理論與應(yīng)用;2006年02期
5 傅琪惠;程希駿;馬利軍;;債務(wù)抵押債券定價(jià)中的違約相依性研究[J];數(shù)學(xué)的實(shí)踐與認(rèn)識(shí);2014年04期
6 吳恒煜;胡根華;秦嗣毅;;次貸危機(jī)下中國股市與國外股市相依性分析——基于Markov機(jī)制轉(zhuǎn)換模型[J];數(shù)理統(tǒng)計(jì)與管理;2013年02期
7 歐陽資生;王同輝;;基金和股票市場的相依性與組合風(fēng)險(xiǎn)分析[J];統(tǒng)計(jì)與決策;2013年21期
8 覃筱;任若恩;;基于極值相依性的金融危機(jī)共生強(qiáng)度研究[J];財(cái)經(jīng)研究;2010年10期
9 徐林;祝東進(jìn);;股市投資回報(bào)過程的長相依性與風(fēng)險(xiǎn)度量[J];經(jīng)濟(jì)數(shù)學(xué);2013年01期
10 白曉東;;極端相依結(jié)構(gòu)下多重生命的生存分布[J];陰山學(xué)刊(自然科學(xué)版);2007年01期
相關(guān)會(huì)議論文 前1條
1 周娜;鐘建安;;團(tuán)隊(duì)差異性對(duì)個(gè)人創(chuàng)新行為的影響——以團(tuán)隊(duì)相依性為調(diào)節(jié)變量[A];第十一屆全國心理學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2007年
相關(guān)重要報(bào)紙文章 前1條
1 復(fù)旦大學(xué)哲學(xué)學(xué)院 汪堂家;生命的相依性[N];中國社會(huì)科學(xué)報(bào);2010年
相關(guān)博士學(xué)位論文 前3條
1 佘笑荷;金融市場相依性建模與風(fēng)險(xiǎn)測度研究[D];華東師范大學(xué);2016年
2 鄧洋;房地產(chǎn)市場非對(duì)稱及厚尾相依性研究[D];華中科技大學(xué);2016年
3 莫俊文;工程進(jìn)度網(wǎng)絡(luò)中工時(shí)的相依性研究[D];天津大學(xué);2010年
相關(guān)碩士學(xué)位論文 前10條
1 姜蕾;金磚五國股票市場間的動(dòng)態(tài)相依特征研究[D];山東大學(xué);2015年
2 廖裕舟;我國股市與商品期貨市場相依性結(jié)構(gòu)分析[D];西南財(cái)經(jīng)大學(xué);2016年
3 梁露子;中外股市的相依性提高了嗎?[D];西南財(cái)經(jīng)大學(xué);2016年
4 賀兆澤;考慮工時(shí)相依性的施工工期優(yōu)化研究[D];蘭州交通大學(xué);2016年
5 劉曉玲;中國股市與國際股市一體化進(jìn)程中的尾部相依性[D];山東大學(xué);2013年
6 盧毅;指數(shù)基金與指數(shù)的相依性研究[D];浙江工商大學(xué);2013年
7 楊雪;保險(xiǎn)中的相依性研究[D];廈門大學(xué);2007年
8 霍俊爽;中國不同金融市場價(jià)格變化的相依性和風(fēng)險(xiǎn)控制[D];長春工業(yè)大學(xué);2012年
9 王躍;知識(shí)型團(tuán)隊(duì)相依性、團(tuán)隊(duì)氛圍對(duì)團(tuán)隊(duì)知識(shí)共享的影響機(jī)制研究[D];南開大學(xué);2015年
10 張鵬;基于動(dòng)態(tài)Copula-ARMA-GJR模型的匯率間相依性研究[D];湖南大學(xué);2014年
,本文編號(hào):1575463
本文鏈接:http://sikaile.net/shoufeilunwen/jjglbs/1575463.html