通過飛秒激光控制結(jié)構(gòu)均勻性、周期性和幾何形狀:起源與應(yīng)用
發(fā)布時(shí)間:2021-02-03 11:26
納米級(jí)尺寸周期性表面結(jié)構(gòu)對(duì)于控制光的傳播以及光與物質(zhì)的相互作用非常重要,其在太陽能轉(zhuǎn)換、光子學(xué)、生物醫(yī)學(xué)領(lǐng)域具有廣闊的應(yīng)用前景。然而周期性納米結(jié)構(gòu)的制造需要復(fù)雜且昂貴的納米制造工具,限制了這些結(jié)構(gòu)在實(shí)際應(yīng)用中的大規(guī)模集成制造。相比較而言,飛秒激光加工在不需要使用掩模的基礎(chǔ)上,可以有效地改變材料的光學(xué)、電、機(jī)械和摩擦學(xué)特性,并在生物醫(yī)學(xué)、環(huán)境和能源領(lǐng)域具有潛在的應(yīng)用。飛秒激光加工可以通過引入隨機(jī)表面結(jié)構(gòu),或者規(guī)則和周期性的表面結(jié)構(gòu),來更改樣品表面的材料特性,可在多種材料上制造具有亞波長周期性的一維飛秒激光誘導(dǎo)周期性表面結(jié)構(gòu)。然而,飛秒激光誘導(dǎo)條紋結(jié)構(gòu)在實(shí)際應(yīng)用中的擴(kuò)展具有三大挑戰(zhàn),尤其是在納米光子學(xué)中,其分別為;1.缺乏長距離的空間均勻性;2.難以產(chǎn)生亞波長周期性表面結(jié)構(gòu),即高空間頻率條紋結(jié)構(gòu);3.難以獲得復(fù)雜的二維幾何形狀。首先,由于納米級(jí)結(jié)構(gòu)可隨機(jī)激發(fā)表面等離激元而形成條紋結(jié)構(gòu),因此最終的條紋結(jié)構(gòu)通常扭曲成許多曲線,從而失去了遠(yuǎn)距離均勻性。其次,高空間頻率條紋結(jié)構(gòu)的起源來自于被照射材料的自組織理論,這與表面刻蝕和原子擴(kuò)散效應(yīng)導(dǎo)致的表面不穩(wěn)定性有關(guān),因此,高空間頻率條紋結(jié)構(gòu)的周期性和均...
【文章來源】:中國科學(xué)院大學(xué)(中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所)吉林省
【文章頁數(shù)】:185 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgements
摘要
Abstract of Dissertation
List of Acronyms
Chapter 1
1.1 Background of direct fs-laser nano/microstructuring
1.2 Optical properties of metals: the Drude model
1.3 Light absorption in metals and the Two Temperature Model
1.4 Surface plasmon polaritons for fs-LIPSSs formation
1.4.1 Surface plasmon-polaritons
1.4.2 Localized surface plasmons for light absorption in metals
1.4.3 Excitations of surface plasmons polaritons
1.4.4 Excitation of SPPs with gratings
1.4.5 Excitation of SPPs via surface roughness or scattering
1.5 Laser-Induced periodic surface structures
1.5.1 Classical LIPSSs
1.5.2 Low-spatial frequency or near subwavelength fs-LIPSSs
1.5.3 High-Spatial frequency fs-LIPSSs
1.5.4 Methods of fabricating uniform 1D fs-LIPSSs structures
1.5.5 Origin of high-spatial uniformity of fs-LIPSSs from delayed double/triple pulses
1.5.6 Two-dimensional surface structures using double or triple pulse laser irradiation
1.5.7 Origin of 2D fs-LIPSSs structures using triple pulse laser irradiation
1.5.8 Formation of various controlled micro/nanostructures
1.6 Applications of fs-laser treated surfaces
1.6.1 Flat, conical and nano/microstructures for antibacterial properties
1.6.2 Light absorbers/emitters
1.6.3 Selective solar absorbers for enhanced thermoelectric generation
1.6.4 Radiative cooling
1.6.5 Radiative and convective cooling for enhanced thermoelectric generation
1.7 Femtosecond laser-textured high-temperature solar absorbers
1.8 Overview of the thesis
Chapter 2
2. Formation of uniform one-dimensional subwavelength fs-LIPSSs structures
2.1 Overview
2.2 Experimental setup
2.3 Formation of 1D fs-LIPSSs with single pulse irradiation
2.4 Maskless formation of uniform 1D subwavelength periodic surface structures by fs-double pulse laser irradiation
2.4.1 Quantitative analysis of grating splitting
2.4.2 Controlling the orientation of fs-LIPSSs by changing the polarization
2.5 Discussion
2.5.1 Origin of the high-uniformity of fs-LIPSSs
2.5.2 Origin of grating-splitting
2.6 Summary
Chapter 3
3. Formation of HSFL and complex 2D surface structures using temporally delayed double and triple fs-pulse laser irradiation
3.1 Overview
3.2 Formation of controllable 2D periodic surface structures on cobalt by femtoseconddouble pulse laser irradiation
3.2.1 Experimental setup
3.2.2 Formation of single pulsed fs-LIPSSs on cobalt
3.3 Formation of 1D and 2D structures by train of double pulses with cross-polarization
3.3.1 Controlling the geometry of 2D surface structures by laser fluence of double pulseirradiation
3.3.2 Formation of 1D HSFL structures on cobalt by controlling the time-delay
3.4 Discussion
3.4.1 Physical mechanism for 2D structures and HSFL formation
3.5 Large-scale formation of uniform two-dimensional subwavelength structures on Nickel by delayed Triple femtosecond laser pulse irradiation
3.5.1 Introduction
3.5.2 Experimental setup
3.6 Results and discussion
3.6.1 Formation of 1D fs-LIPSSs on Ni using train of single-pulsed femtosecond laser beam
3.6.2 Formation of 1D nanowires using train of triple pulsed femtosecond laser beam
3.6.3 Comparison of 2D structures formed using train of double and triple pulsedfemtosecond laser beam
3.7 Effect of time-delay on the evolution of surface structures using train of triple pulsedbeam
3.7.1 Formation mechanism of vertical and horizontal grooves
3.7.2 Variation of vertical and horizontal periodicity as a function of time-delay
3.8 Physical mechanism of period dependence on time-delay
3.9 Summary
Chapter 4
4. Femtosecond laser-induced micro/nanostructuring for biomedical applications
4.1 Overview
4.2 Femtosecond laser-induced micro/nanostructuring of gold under spot irradiation
4.2.1 Experimental setup
4.2.2 Formation of fs-LIPSSs under normal and 45-degree incidence
4.2.3 Micro and nanostructures under fixed spot and scanning irradiation
4.2.4 Creation of hexagonal patterned structures
4.2.5 Conic structures
4.3 Optimal window condition of various surface structures
4.4 Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laserpulse in scanning mode
4.4.1 Overview of bacterial and bactericidal surfaces
4.5 Experimental details
4.5.1 Sample fabrication
4.5.2 Contact angle measurements
4.5.3 Bacterial adhesion test
4.5.4 SEM analysis
4.5.5 Bacterial quantification
4.6 Formation of superhydrophobic and antibacterial surfaces by fs-laser irradiation
4.6.1 Physical Mechanism of LSFL
4.7 The impact of structural features/dimension on bacterial adhesion
4.8 Summary
Chapter 5
5 Applications of fs-laser treated surfaces for enhanced thermoelectric generation
5.1 Spectral absorption control of femtosecond laser-treated metals and application insolar-thermal devices
5.2 Numerical analyses of hybridized metallic surface nanostructures
5.3 Experimental setup
5.3.1 Laser-induced surface structuring
5.3.2 Simulations
5.3.4 Determination of particles’ radii from SEM images
5.3.5 Physical vapor deposition of Ti O2
5.3.6 Annealing
5.3.7 Spectral and surface characterization
" <="" sub="">> 5.3.8 TEG Measurements</li>
5.4 Creation of selective and broad band light absorbers with fs-laser ablation
5.5 High-temperature operation of fs-laser treated SSA
5.6 Solar thermoelectric generation using fs-laser treated W
5.7 Increasing radiative and convective cooling capacity of Aluminum heat exchanger byfemtosecond laser treatment for thermoelectric heat scavengers
5.8 Experimental section
5.8.1 Sample preparation
5.8.2 Fs-Laser structuring
" <="" sub="">> 5.8.3 TEG Measurements</li>
5.8.4 Surface and optical Characterization
5.9 Results and Discussion
5.9.1 Creation of fs-light absorbers on Al
5.9.2 Effect of variation in spectral emissivity on TEG output power
5.9.3 Effect of variation in surface area on TEG output power
5.10 Summary
Chapter 6
Conclusions and outlook
References
Author’s Resume
List of published and ongoing research works
本文編號(hào):3016423
【文章來源】:中國科學(xué)院大學(xué)(中國科學(xué)院長春光學(xué)精密機(jī)械與物理研究所)吉林省
【文章頁數(shù)】:185 頁
【學(xué)位級(jí)別】:博士
【文章目錄】:
Acknowledgements
摘要
Abstract of Dissertation
List of Acronyms
Chapter 1
1.1 Background of direct fs-laser nano/microstructuring
1.2 Optical properties of metals: the Drude model
1.3 Light absorption in metals and the Two Temperature Model
1.4 Surface plasmon polaritons for fs-LIPSSs formation
1.4.1 Surface plasmon-polaritons
1.4.2 Localized surface plasmons for light absorption in metals
1.4.3 Excitations of surface plasmons polaritons
1.4.4 Excitation of SPPs with gratings
1.4.5 Excitation of SPPs via surface roughness or scattering
1.5 Laser-Induced periodic surface structures
1.5.1 Classical LIPSSs
1.5.2 Low-spatial frequency or near subwavelength fs-LIPSSs
1.5.3 High-Spatial frequency fs-LIPSSs
1.5.4 Methods of fabricating uniform 1D fs-LIPSSs structures
1.5.5 Origin of high-spatial uniformity of fs-LIPSSs from delayed double/triple pulses
1.5.6 Two-dimensional surface structures using double or triple pulse laser irradiation
1.5.7 Origin of 2D fs-LIPSSs structures using triple pulse laser irradiation
1.5.8 Formation of various controlled micro/nanostructures
1.6 Applications of fs-laser treated surfaces
1.6.1 Flat, conical and nano/microstructures for antibacterial properties
1.6.2 Light absorbers/emitters
1.6.3 Selective solar absorbers for enhanced thermoelectric generation
1.6.4 Radiative cooling
1.6.5 Radiative and convective cooling for enhanced thermoelectric generation
1.7 Femtosecond laser-textured high-temperature solar absorbers
1.8 Overview of the thesis
Chapter 2
2. Formation of uniform one-dimensional subwavelength fs-LIPSSs structures
2.1 Overview
2.2 Experimental setup
2.3 Formation of 1D fs-LIPSSs with single pulse irradiation
2.4 Maskless formation of uniform 1D subwavelength periodic surface structures by fs-double pulse laser irradiation
2.4.1 Quantitative analysis of grating splitting
2.4.2 Controlling the orientation of fs-LIPSSs by changing the polarization
2.5 Discussion
2.5.1 Origin of the high-uniformity of fs-LIPSSs
2.5.2 Origin of grating-splitting
2.6 Summary
Chapter 3
3. Formation of HSFL and complex 2D surface structures using temporally delayed double and triple fs-pulse laser irradiation
3.1 Overview
3.2 Formation of controllable 2D periodic surface structures on cobalt by femtoseconddouble pulse laser irradiation
3.2.1 Experimental setup
3.2.2 Formation of single pulsed fs-LIPSSs on cobalt
3.3 Formation of 1D and 2D structures by train of double pulses with cross-polarization
3.3.1 Controlling the geometry of 2D surface structures by laser fluence of double pulseirradiation
3.3.2 Formation of 1D HSFL structures on cobalt by controlling the time-delay
3.4 Discussion
3.4.1 Physical mechanism for 2D structures and HSFL formation
3.5 Large-scale formation of uniform two-dimensional subwavelength structures on Nickel by delayed Triple femtosecond laser pulse irradiation
3.5.1 Introduction
3.5.2 Experimental setup
3.6 Results and discussion
3.6.1 Formation of 1D fs-LIPSSs on Ni using train of single-pulsed femtosecond laser beam
3.6.2 Formation of 1D nanowires using train of triple pulsed femtosecond laser beam
3.6.3 Comparison of 2D structures formed using train of double and triple pulsedfemtosecond laser beam
3.7 Effect of time-delay on the evolution of surface structures using train of triple pulsedbeam
3.7.1 Formation mechanism of vertical and horizontal grooves
3.7.2 Variation of vertical and horizontal periodicity as a function of time-delay
3.8 Physical mechanism of period dependence on time-delay
3.9 Summary
Chapter 4
4. Femtosecond laser-induced micro/nanostructuring for biomedical applications
4.1 Overview
4.2 Femtosecond laser-induced micro/nanostructuring of gold under spot irradiation
4.2.1 Experimental setup
4.2.2 Formation of fs-LIPSSs under normal and 45-degree incidence
4.2.3 Micro and nanostructures under fixed spot and scanning irradiation
4.2.4 Creation of hexagonal patterned structures
4.2.5 Conic structures
4.3 Optimal window condition of various surface structures
4.4 Creating superhydrophobic and antibacterial surfaces on gold by femtosecond laserpulse in scanning mode
4.4.1 Overview of bacterial and bactericidal surfaces
4.5 Experimental details
4.5.1 Sample fabrication
4.5.2 Contact angle measurements
4.5.3 Bacterial adhesion test
4.5.4 SEM analysis
4.5.5 Bacterial quantification
4.6 Formation of superhydrophobic and antibacterial surfaces by fs-laser irradiation
4.6.1 Physical Mechanism of LSFL
4.7 The impact of structural features/dimension on bacterial adhesion
4.8 Summary
Chapter 5
5 Applications of fs-laser treated surfaces for enhanced thermoelectric generation
5.1 Spectral absorption control of femtosecond laser-treated metals and application insolar-thermal devices
5.2 Numerical analyses of hybridized metallic surface nanostructures
5.3 Experimental setup
5.3.1 Laser-induced surface structuring
5.3.2 Simulations
5.3.4 Determination of particles’ radii from SEM images
5.3.5 Physical vapor deposition of Ti O2
5.3.6 Annealing
5.3.7 Spectral and surface characterization
" <="" sub="">> 5.3.8 TEG Measurements</li>
5.4 Creation of selective and broad band light absorbers with fs-laser ablation
5.5 High-temperature operation of fs-laser treated SSA
5.6 Solar thermoelectric generation using fs-laser treated W
5.7 Increasing radiative and convective cooling capacity of Aluminum heat exchanger byfemtosecond laser treatment for thermoelectric heat scavengers
5.8 Experimental section
5.8.1 Sample preparation
5.8.2 Fs-Laser structuring
" <="" sub="">> 5.8.3 TEG Measurements</li>
5.8.4 Surface and optical Characterization
5.9 Results and Discussion
5.9.1 Creation of fs-light absorbers on Al
5.9.2 Effect of variation in spectral emissivity on TEG output power
5.9.3 Effect of variation in surface area on TEG output power
5.10 Summary
Chapter 6
Conclusions and outlook
References
Author’s Resume
List of published and ongoing research works
本文編號(hào):3016423
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/3016423.html
最近更新
教材專著