強(qiáng)噪聲下結(jié)構(gòu)振動(dòng)特征提取與損傷檢測(cè)研究
[Abstract]:In the process of damage detection of various engineering structures based on vibration response, due to the influence of external natural environment or human factors, the measured vibration response signal not only contains the damage information of the structure. At the same time, there is also a large number of noise interference. The existence of noise seriously affects the extraction of effective vibration response data of the structure, especially for the initial small damage state of the structure, the damage response characteristics of the structure are relatively weak. If reasonable noise reduction method is not adopted, it is difficult to get better damage identification results. Therefore, this paper mainly studies the feature extraction and damage location based on vibration response signal in strong noise background. Aiming at the feature extraction and damage location of vibration response signal, the main work of this paper is as follows: aiming at the problem of noise interference in rotor rub-impact fault detection of rotating machinery, A large parameter adaptive stochastic resonance algorithm based on quadratic sampling is proposed. The algorithm solves the limitation that the traditional stochastic resonance algorithm is only suitable for small parameter detection. Simulation and experimental data analysis show that the method can significantly improve the signal-to-noise ratio (SNR) index of the test data. Based on the structural damage detection of Duffing chaotic oscillator, a new structural damage detection method based on Duffing chaotic oscillator and response sensitivity is proposed in this paper. The response signal is extracted by a set of specific parameter selection, thus avoiding the tedious traditional Duffing oscillator parameter selection method. The method is applied to the beam model and bridge model of three dimensions. The results show that the method can realize the damage location of the structure under the background of strong noise, which can provide a better idea for structural damage identification. In order to identify the test parameters accurately, the phase space reconstruction and singular spectrum analysis of supersonic flight test data are carried out under the condition of pneumatic noise. Firstly, the feasibility of the method is proved by numerical simulation. Then, through the acoustic vibration test of a certain ultrasonic UAV, the phase space reconstruction of the test data is carried out, and the singular value decomposition of signal subspace and noise subspace is realized. The dimension of real signal subspace is determined by defining singular value difference spectrum, and a method to optimize the peak value of difference spectrum is proposed for the existing maximum difference spectrum theory. The reconstruction results show that the method is suitable for data processing of aircraft acoustic vibration test under supersonic flight conditions. In order to solve the problem of noise interference in the process of damage detection of thin plate structure (aluminum plate), a damage detection method based on the principle of maximum likelihood based on singular spectrum analysis is proposed. The Lamb wave excitation response signal is analyzed by singular spectrum analysis, and the optimal reconstructed signal is selected by optimal selection difference spectrum theory. based on the principle of maximum similarity, the genetic algorithm (Genetic Algorithms, is adopted. GA) optimize the reconstructed signal parameters to realize the analysis of the measured signal components. The experimental results of aluminum plate show the practicability and effectiveness of the method. In this paper, the problem of nonlinear structural damage detection in strong noise background is considered, and the corresponding physical equivalent model is designed for the nonlinear mass-spring system. By increasing the degree of freedom of the structure, the original nonlinear system is equivalent to the enhanced linear system, and the dynamic equilibrium equation of the nonlinear term of the system is established. Through singular spectrum analysis, direct parameter identification method and matrix minimum rank disturbance theory, the damage location and damage degree of nonlinear system under strong noise background are realized.
【學(xué)位授予單位】:西北工業(yè)大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O327
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 陳偉;瞿曉;葛丁飛;;主觀引導(dǎo)特征提取法在光譜識(shí)別中的應(yīng)用[J];科技通報(bào);2011年04期
2 張劍清,J.A.R.Blais;運(yùn)用信息論進(jìn)行特征提取[J];測(cè)繪學(xué)報(bào);1990年03期
3 高湘萍;吳小培;沈謙;;基于腦電的意識(shí)活動(dòng)特征提取與識(shí)別[J];安徽大學(xué)學(xué)報(bào)(自然科學(xué)版);2006年02期
4 楊麗梅;郭立紅;;天空背景下飛行器結(jié)構(gòu)特征提取的新方法[J];光學(xué)技術(shù);2007年03期
5 陳振洲;鄒麗珊;;核Foley-Sammon變換[J];廣州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年04期
6 王江晴;萬晨;;周邊方向貢獻(xiàn)度在脫機(jī)手寫女書特征提取中的應(yīng)用[J];中南民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2010年03期
7 李華平;;基于多特征提取的識(shí)別算法數(shù)學(xué)建模優(yōu)化研究[J];哈爾濱師范大學(xué)自然科學(xué)學(xué)報(bào);2013年04期
8 張紹武;潘泉;趙春暉;程詠梅;;基于加權(quán)自相關(guān)函數(shù)特征提取法的多類蛋白質(zhì)同源寡聚體分類研究[J];生物醫(yī)學(xué)工程學(xué)雜志;2007年04期
9 呼聲波;劉希玉;;網(wǎng)頁分類中特征提取方法的比較與改進(jìn)[J];山東師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2008年03期
10 李鄉(xiāng)儒;;光譜數(shù)據(jù)挖掘中的特征提取方法[J];天文學(xué)進(jìn)展;2012年01期
相關(guān)會(huì)議論文 前10條
1 尚修剛;蔣慰孫;;模糊特征提取新算法[A];1997中國(guó)控制與決策學(xué)術(shù)年會(huì)論文集[C];1997年
2 潘榮江;孟祥旭;楊承磊;王銳;;旋轉(zhuǎn)體的幾何特征提取方法[A];第一屆建立和諧人機(jī)環(huán)境聯(lián)合學(xué)術(shù)會(huì)議(HHME2005)論文集[C];2005年
3 薛燕;李建良;朱學(xué)芳;;人臉識(shí)別中特征提取的一種改進(jìn)方法[A];第十三屆全國(guó)圖象圖形學(xué)學(xué)術(shù)會(huì)議論文集[C];2006年
4 杜栓平;曹正良;;時(shí)間—頻率域特征提取及其應(yīng)用[A];2005年全國(guó)水聲學(xué)學(xué)術(shù)會(huì)議論文集[C];2005年
5 黃先鋒;韓傳久;陳旭;周劍軍;;運(yùn)動(dòng)目標(biāo)的分割與特征提取[A];全國(guó)第二屆信號(hào)處理與應(yīng)用學(xué)術(shù)會(huì)議?痆C];2008年
6 魏明果;;方言比較的特征提取與矩陣分析[A];2009系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2009年
7 林土勝;賴聲禮;;視網(wǎng)膜血管特征提取的拆支跟蹤法[A];1999年中國(guó)神經(jīng)網(wǎng)絡(luò)與信號(hào)處理學(xué)術(shù)會(huì)議論文集[C];1999年
8 秦建玲;李軍;;基于核的主成分分析的特征提取方法與樣本篩選[A];2005年中國(guó)機(jī)械工程學(xué)會(huì)年會(huì)論文集[C];2005年
9 劉紅;陳光,
本文編號(hào):2485719
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2485719.html