擁擠環(huán)境下的促進擴散動力學研究
[Abstract]:DNA-binding proteins, such as transfer-in factors and DNA repair proteins, are critical to the process of searching for their specific binding target sites located in a large number of non-specific binding sites of DNA, These bioreaction processes include the expression and management of genes, and the like. In the 1970s, Riggs et al., in vitro, found that the search for specific binding proteins to their DNA-specific targets was very rapid and efficient, with a rate of about 100-fold higher than the three-dimensional limit diffusion limit. In order to explain the contradiction between the abnormally large protein and the DNA-specific binding rate and the three-dimensional limit diffusion rate, Berg et al. proposed and developed a diffusion mechanism that is now widely accepted and applied in a series of groundbreaking articles. The basic idea of promoting the diffusion mechanism is that the process of protein search specific target uses three-dimensional diffusion in solution and one-dimensional slip on the DNA chain. Subsequently, a number of theoretical aspects of the promotion of diffusion, experimental aspects, and numerical simulation have been developed and developed. In the first chapter, we present a review of the progress in the study of the diffusion of diffusion. For nearly a decade, scholars have paid more attention to the study of the mechanism of promoting the diffusion in the in-vivo environment. Macromolecules, such as proteins, ribosomes, and the like, are present in the biological cells of 10% to 40% of the cell volume fraction. These macromolecules in the cells result in a crowded intracellular environment. The molecular crowding effect has a very important effect on the target search dynamics. In the second chapter, we used the theoretical analysis and the two-dimensional Langevan's method to study the role of the molecular crowding effect in the target search dynamics. We find that the search time is increasing monotonously with the increasing of the concentration of the congestion agent, and by further study of the dynamics detail in the search process, we find that the main reason for this monotonic increase is that the average number of cycles and the average one-dimensional diffusion time increase monotonically, While the average two-dimensional diffusion time is substantially unchanged as the change in the concentration of the congestion agent particles. In addition, for the two-dimensional diffusion, the cage effect brought by the congested molecules reduces the two-dimensional jump length and narrows the distribution of the two-dimensional jump length. Within the cell, nearly 30% of the DNA strand sites are covered by the congested macromolecules to form a barrier that blocks the one-dimensional search of specific binding proteins. In the third chapter, we study the effect of the barrier particles on the promotion of the diffusion kinetics by using the three-dimensional dynamic simulation method. In the case of a pair of barrier particles that are placed symmetrically about the target particle, we find that, as the distance between the barrier particles and the target particles increases, the average search time is then rapidly reduced and then tends to be gentle. The search time may initially increase and reach the maximum with any placement of the plurality of barrier particles, and then a surprising reduction as the concentration of the barrier particles in any place increases. The search time may also always increase as the concentration of the barrier particles increases, depending on the size of the non-specific binding energy and the volume fraction of the DNA strand in the total space. Our findings have coordinated the conclusions of the previous study on the role of the barrier particles in the target search process. In particular, the above-described non-monotonic behavior of the roadblock as the threshold value changes indicates that the barrier particles may be in favor of the target search after reaching a certain critical value. In the fourth chapter, the subdiffusion of the protein in the solution and its implied molecular crowding conditions are of concern to us. In the three-dimensional solution, we use fractional Brownian motion to simulate the abnormal Brownian motion and the sub-diffusion motion of the protein particles. We have shown that the mean search time for changes in non-specific binding energy levels has a significant minimum value, whether in normal or sub-proliferation. We have found that for a smaller sub-diffusion index, the longer the best target search time with time changes, and such a trend is very clear. The increase in the average search time for smaller cases is attributed to the increase in the average three-dimensional diffusion time and the more repeated site search resulting from the motion characteristics of the fractional Brownian motion. We believe that our work provides a more in-depth understanding and a new field of view for the study of the promotion of diffusion kinetics in the intracellular environment.
【學位授予單位】:中國科學技術(shù)大學
【學位級別】:博士
【學位授予年份】:2017
【分類號】:Q61
【相似文獻】
相關(guān)期刊論文 前10條
1 龍英,劉虹,關(guān)志成,何曉威,蔡國平;Effects of Pulsed Electric Fields on DNA Synthesis in an Osteoblast-Like Cell Line (UMR-106)[J];Tsinghua Science and Technology;2000年04期
2 徐耀忠;Thiobase DNA: the chemistry and some applications in cancer studies[J];Progress in Natural Science;2000年06期
3 傅衍 ,牛冬 ,阮暉 ,陳海燕;COMPARISON OF DIFFERENT ENZYMES AND PROBES AND THEIR COMBINATIONS IN DNA FINGERPRINTING[J];Journal of Zhejiang University Science;2001年04期
4 安小惠 ,王一理 ,來寶長 ,耿一萍 ,司履生;CONSTRUCTION OF HUMAN INTERLUEKIN-18 DNA VACCINE AND IT'S EXPRESSION IN MAMMALIAN CELLS[J];Journal of Xi'an Medical University;2001年02期
5 張鵬 ,孟繼本 ,龍江 ,松浦輝男 ,王永梅;Synthesis of Benzo [α]phenoxazin-5-one Derivatives and Their Interactions with DNA[J];Chinese Journal of Chemistry;2002年05期
6 ;DIFFERENT RESULTS BY DIFFERENT COMMERCIAL TAQ DNA POLYMERASE IN RAPD[J];四川動物;2002年02期
7 ;Genetic Diversity of Three Aristichthys nobilis Populations and One Inbreeding Stock[J];Wuhan University Journal of Natural Sciences;2002年02期
8 強曉藝;DNA計算的應(yīng)用與展望[J];西安聯(lián)合大學學報;2002年02期
9 王軍陽,范桂香,勝利,袁育康;THE CONSTRUCTION AND PRELIMINARY APPRAISEMENT OF HSV-2 gD GENE DNA VACCINE[J];Academic Journal of Xi'an Jiaotong University;2002年02期
10 董菁 ,成軍 ,王勤環(huán) ,施雙雙 ,王剛 ,斯崇文;CLONING AND ANALYSIS OF THE GENOMIC DNA SEQUENCE OF AUGMENTER OF LIVERR EGENERATION FROM RAT[J];Chinese Medical Sciences Journal;2002年02期
相關(guān)會議論文 前10條
1 Michael J.Siefkes;Cory O.Brant;Ronald B.Walter;;A novel real-time XL-PCR for DNA damage detection[A];漁業(yè)科技創(chuàng)新與發(fā)展方式轉(zhuǎn)變——2011年中國水產(chǎn)學會學術(shù)年會論文摘要集[C];2011年
2 ;Hormonal Regulation and Tumorigenic Role of DNA Methyltransferase[A];2011中國婦產(chǎn)科學術(shù)會議暨浙江省計劃生育與生殖醫(yī)學學術(shù)年會暨生殖健康講習班論文匯編[C];2011年
3 Dongmei Zhao;Fan Jin;Yuli Qian;Hefeng Huang;;Expression patterns of Dnmtl and Dnmt3b in preimplantational mouse embryos and effects of in-vitro cultures on their expression[A];中華醫(yī)學會第十次全國婦產(chǎn)科學術(shù)會議婦科內(nèi)分泌會場(婦科內(nèi)分泌學組、絕經(jīng)學組、計劃生育學組)論文匯編[C];2012年
4 姜東成;蔣稼歡;楊力;蔡紹皙;K.-L.Paul Sung;;在聚吡咯微點致動下的DNA雜交行為[A];2008年全國生物流變學與生物力學學術(shù)會議論文摘要集[C];2008年
5 白明慧;翁小成;周翔;;聯(lián)鄰苯二酚類小分子作為DNA交聯(lián)劑的研究[A];第六屆全國化學生物學學術(shù)會議論文摘要集[C];2009年
6 張曄;杜智;楊斌;高英堂;;檢測外周血中游離DNA的應(yīng)用前景(綜述)[A];天津市生物醫(yī)學工程學會第29屆學術(shù)年會暨首屆生物醫(yī)學工程前沿科學研討會論文集[C];2009年
7 周紅;鄭江;王良喜;丁國富;魯永玲;潘文東;羅平;肖光夏;;CpG DNA誘導全身炎癥反應(yīng)綜合征的作用及其機制研究[A];全國燒傷創(chuàng)面處理、感染專題研討會論文匯編[C];2004年
8 ;EFFECTS OF Ku70-DEFICIENT ON ARSENITE-INDUCED DNA DOUBLE STRAND BREAKS, CHROMOSOMAL ALTERATIONS AND CELL CYCLE ARREST[A];海峽兩岸第三屆毒理學研討會論文摘要[C];2005年
9 李經(jīng)建;冀中華;蔡生民;;小溝結(jié)合方式中的DNA媒介電荷轉(zhuǎn)移[A];第十三次全國電化學會議論文摘要集(下集)[C];2005年
10 ;The interaction between Levofloxacine Hydrochloride and DNA mediated by Cu~(2+)[A];湖北省化學化工學會2006年年會暨循環(huán)經(jīng)濟專家論壇論文集[C];2006年
相關(guān)重要報紙文章 前10條
1 本報記者 袁滿;平安:把“領(lǐng)先”作為DNA[N];經(jīng)濟觀察報;2006年
2 舒放;編織一個DNA納米桶[N];醫(yī)藥經(jīng)濟報;2006年
3 閆潔;英兩無罪公民起訴要求銷毀DNA記錄[N];新華每日電訊;2008年
4 何德功;日本制成診斷魚病的“DNA書”[N];農(nóng)民日報;2004年
5 本報記者 張巍巍;DNA樣本也能作假[N];科技日報;2009年
6 周斌偉 鄒巍;蘇州警方應(yīng)用DNA技術(shù)一年偵破案件1887起[N];人民公安報;2011年
7 本報記者 楊天笑;揭秘“神探”DNA[N];蘇州日報;2011年
8 第四軍醫(yī)大學基礎(chǔ)醫(yī)學部生物化學與分子生物學教研室教授 李福洋;破除法老DNA的咒語[N];東方早報;2011年
9 常麗君;DNA電路可檢測導致疾病的基因損傷[N];科技日報;2012年
10 常麗君;效率和質(zhì)量:“DNA制造業(yè)”兩大障礙被攻克[N];科技日報;2012年
相關(guān)博士學位論文 前10條
1 唐陽;基于質(zhì)譜技術(shù)的基因組DNA甲基化及其氧化衍生物分析[D];武漢大學;2014年
2 池晴佳;DNA動力學與彈性性質(zhì)研究[D];重慶大學;2015年
3 胡璐璐;哺乳動物DNA去甲基化過程關(guān)鍵酶TET2的三維結(jié)構(gòu)與P暬蒲芯縖D];復旦大學;2014年
4 馬寅洲;基于滾環(huán)擴增的DNA自組裝技術(shù)的研究[D];南京大學;2014年
5 黃學鋒;精子DNA碎片的臨床意義:臨床和實驗研究[D];復旦大學;2013年
6 隋江東;APE1促進DNA-PKcs介導hnRNPA1磷酸化及其在有絲分裂期端粒保護中的作用[D];第三軍醫(yī)大學;2015年
7 劉松柏;結(jié)構(gòu)特異性核酸酶FEN1在DNA復制及細胞周期過程中的功能性研究[D];浙江大學;2015年
8 王璐;哺乳動物中親本DNA甲基化的重編程與繼承[D];中國科學院北京基因組研究所;2015年
9 齊文靖;染色質(zhì)改構(gòu)蛋白BRG1在DNA雙鏈斷裂修復中的作用及機制研究[D];東北師范大學;2015年
10 龍湍;水稻T-DNA插入突變?nèi)后w側(cè)翼序列的分離分析和OsaTRZ2的克隆與功能鑒定[D];華中農(nóng)業(yè)大學;2014年
相關(guān)碩士學位論文 前10條
1 董洪奎;面向可視化納米操作的DNA運動學建模及誤差實時校正方法[D];沈陽理工大學;2014年
2 聞金燕;水溶性羧基和吡啶基咔咯大環(huán)與DNA和人血清蛋白的相互作用[D];華南理工大學;2015年
3 江懌雨;水溶性羧酸卟啉及其配合物與DNA和人血清蛋白的相互作用[D];華南理工大學;2015年
4 高志森;比較外周游離循環(huán)腫瘤DNA與癌胚抗原監(jiān)測非小細胞肺癌根治術(shù)前后腫瘤負荷變化的初步研究[D];福建醫(yī)科大學;2015年
5 丁浩;血漿循環(huán)DNA完整性及多基因甲基化對肺癌診斷價值的研究[D];河北大學;2015年
6 王鵬;基于碳點@氧化石墨烯復合材料DNA生物傳感器的構(gòu)建及用于PML/RARα基因檢測[D];福建醫(yī)科大學;2015年
7 李海青;轉(zhuǎn)堿篷和鹽角草總DNA的耐鹽紫花苜蓿的選育[D];內(nèi)蒙古大學;2015年
8 李婷婷;小鼠DNA模式識別重要受體的分子結(jié)構(gòu)特征及其功能研究[D];中國農(nóng)業(yè)科學院;2015年
9 劉瑞斯;抗癌藥物奧沙利鉑與DNA相互作用的原子力顯微鏡觀察研究[D];東北林業(yè)大學;2015年
10 熊忠;芳香二肽與一價金屬離子間相互作用及DNA切割活性的研究[D];鄭州大學;2015年
,本文編號:2484683
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2484683.html