開(kāi)放量子系統(tǒng)中糾纏動(dòng)力學(xué)的理論研究
[Abstract]:As a multi-discipline of quantum mechanics, informatics and computer science, quantum informatics carries the dream of crossing the limits of classical information science. Nowadays, its rapid development has brought profound changes to the traditional communication and computer fields, and the rich achievements of quantum information in theory and experiment have also enriched the profound connotation of quantum mechanics. It is well known that the quantum property of micro-system is extremely fragile in reality, and its internal coherence or entanglement is easily destroyed by the surrounding complex environment, which also becomes the most important obstacle in the processing and calculation of quantum information. Therefore, it is of great practical significance to restrain the decoherence of quantum system and protect the quantum property of the system. From the theoretical point of view, studying the dynamics evolution of the open quantum system is helpful to understand the decoherence mechanism of the system. From the point of view of reality, the influence of environment on the system is not always negative. In some cases, the memory effect of environment is the key factor to protect the quantum property of the system. Therefore, this paper focuses on the non-Markov memory effect in the open quantum system, based on the exact decoherence dynamics of the physical system. In this paper, a universal method to realize the long-term preservation of quantum coherence by using the special structure of environment is explored. In this paper, we first summarize the history of quantum mechanics, discuss the necessity of studying open quantum systems from the transition between quantum and classical problems, and briefly review the present research situation in this field. In the second chapter, we introduce the Feynman-Vernon influence functional theory, which is the theoretical basis of this paper. In chapter 3, the main work of this paper is introduced. Firstly, the exact entanglement dynamics of Fermi system in Bose environment is constructed from the effective fermion model, and then the decoherence suppression scheme for Fermi system is proposed. In chapter 4, we apply the de-coherent suppression scheme to the actual physical system. In quantum dot nanostructures with excellent integrability, controllability and good stability, by solving the strictly reduced density matrix of the system and analyzing the non-equilibrium Green's function, We find that the environmental memory effect is the key to the maximum steady-state Fermi entanglement. In chapter 5, we turn our attention to the continuous variable system to explore how the non- Markov property affects the radiation pressure effect of the cavity optical mechanical system. Therefore, the memory effect of the environment is effectively considered by the exact perturbation solution, and the basic theory of the optical mechanical system based on the Born-Markov approximation is extended to the non-Markov region. In chapter 6, we reconstruct the wave function and density matrix of the coupled harmonic oscillator analytically by using the equivalence of Heisenberg and Schrodinger pictures. The research in this paper plays a positive role in understanding the evolution of entanglement in open quantum systems. From discrete variable quantum system to continuous variable quantum system, the research method in this paper may be applied to a wider range of physical systems.
【學(xué)位授予單位】:大連理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O413.1
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李宗誠(chéng);;邊界交流關(guān)系、量子系統(tǒng)消耗與量子組織均衡——量子開(kāi)放系統(tǒng)邊界交流均衡分析力學(xué)基礎(chǔ)(Ⅱ)[J];原子與分子物理學(xué)報(bào);2008年04期
2 叢爽;朱亞萍;劉建秀;;不同目標(biāo)函數(shù)的量子系統(tǒng)動(dòng)態(tài)跟蹤[J];系統(tǒng)科學(xué)與數(shù)學(xué);2012年06期
3 劉延生,汪佩瓊;量子系統(tǒng)絕熱演化的非動(dòng)力學(xué)相位[J];武漢水利電力大學(xué)學(xué)報(bào);1995年05期
4 常功;;量子系統(tǒng)中非指數(shù)形式衰變的首次發(fā)現(xiàn)[J];科學(xué);1998年01期
5 黃澤霞;黃德才;俞攸紅;;開(kāi)放量子系統(tǒng)狀態(tài)最優(yōu)跟蹤控制的研究[J];計(jì)算機(jī)科學(xué);2013年12期
6 叢爽;匡森;;量子系統(tǒng)中狀態(tài)估計(jì)方法的綜述[J];控制與決策;2008年02期
7 梅迪;李崇;楊國(guó)輝;宋鶴山;;高維量子系統(tǒng)中編碼和解碼方案(英文)[J];大連理工大學(xué)學(xué)報(bào);2009年02期
8 楊潔;叢爽;;單個(gè)控制場(chǎng)下開(kāi)放量子系統(tǒng)的狀態(tài)轉(zhuǎn)移(英文)[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2012年01期
9 王銀珠;侯晉川;;無(wú)限維兩體量子系統(tǒng)可分態(tài)的一個(gè)必要充分條件[J];中北大學(xué)學(xué)報(bào)(自然科學(xué)版);2012年01期
10 賀圢;侯晉川;;單量子系統(tǒng)狀態(tài)相等的兩類充分必要條件[J];運(yùn)城學(xué)院學(xué)報(bào);2012年02期
相關(guān)會(huì)議論文 前10條
1 楊名;鄭小虎;楊青;董萍;方曙東;王長(zhǎng)春;曹卓良;;高維量子系統(tǒng)糾纏濃縮[A];第十五屆全國(guó)原子與分子物理學(xué)術(shù)會(huì)議論文摘要集[C];2009年
2 劉曉艷;劉學(xué)深;周忠源;丁培柱;;量子系統(tǒng)顯式辛格式的優(yōu)化[A];Structure Preserving Algorithm and Its Applications--Proceedings of CCAST (World Laboratory) Workshop[C];1999年
3 叢爽;;量子系統(tǒng)控制做什么?[A];系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)論文集(第15卷)[C];2014年
4 產(chǎn)林平;叢爽;;開(kāi)放量子系統(tǒng)量子態(tài)相干保持的控制策略[A];'2010系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
5 叢爽;楊霏;;開(kāi)放量子系統(tǒng)收斂的狀態(tài)控制策略[A];中國(guó)自動(dòng)化學(xué)會(huì)控制理論專業(yè)委員會(huì)B卷[C];2011年
6 叢爽;;量子系統(tǒng)的相干控制策略及其實(shí)現(xiàn)[A];'2010系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)會(huì)議論文集[C];2010年
7 叢爽;鄭捷;;兩能級(jí)量子系統(tǒng)控制場(chǎng)的設(shè)計(jì)與操縱[A];'2006系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2006年
8 周薇薇;張明;謝紅衛(wèi);;量子系統(tǒng)的多時(shí)間點(diǎn)測(cè)量[A];'2006系統(tǒng)仿真技術(shù)及其應(yīng)用學(xué)術(shù)交流會(huì)論文集[C];2006年
9 劉學(xué)深;丁培柱;;量子系統(tǒng)的辛算法及其在激光原子物理中的應(yīng)用[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
10 李兆凱;Man-HongYung;陳宏偉;魯大為;James D.Whitfield;彭新華;Ala'n Aspuru-Guzik;杜江峰;;利用核磁共振量子計(jì)算解決量子系統(tǒng)基態(tài)問(wèn)題[A];第十七屆全國(guó)波譜學(xué)學(xué)術(shù)會(huì)議論文摘要集[C];2012年
相關(guān)重要報(bào)紙文章 前1條
1 記者 吳長(zhǎng)鋒;捉住“量子小妖”實(shí)現(xiàn)量子算法冷卻[N];科技日?qǐng)?bào);2014年
相關(guān)博士學(xué)位論文 前10條
1 崔曉東;GARRISON-WRIGHT相位族的理論與應(yīng)用研究[D];山東大學(xué);2015年
2 周薇薇;基于幾何表示的典型量子系統(tǒng)辨識(shí)與控制[D];國(guó)防科學(xué)技術(shù)大學(xué);2013年
3 陳沖;周期性驅(qū)動(dòng)開(kāi)放量子系統(tǒng)的動(dòng)力學(xué)研究[D];蘭州大學(xué);2016年
4 程l,
本文編號(hào):2450183
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2450183.html