銅銦硫基半導(dǎo)體量子點(diǎn)光電特性及其應(yīng)用的研究
[Abstract]:In semiconductor quantum dots, due to the existence of quantum confinement effect, it has unique optical properties. Therefore, it has an important application prospect in biological, photoelectric and photovoltaic fields. In this paper, based on the concept of green chemistry, the nontoxic copper-indium-sulfur-based quantum dots have been experimentally studied from the aspects of material synthesis, optical mechanism and application, and the following innovative achievements have been obtained: 1. The optical mechanism of quantum dots has been studied. We have synthesized CuInS2 quantum dots, CuInS2/ZnS core / shell quantum dots and ZnCuInS/ZnSe/ZnS core / shell quantum dots. During the characterization of the quantum dots, some properties of these quantum dots were found, including the wide absorption and luminescence spectra, and the existence of a large Stokes shift, which is determined by the energy band structure and the luminescence mechanism. The large Stokes shift (400-500meV) proves that the main recombination process in this kind of quantum dots is the recombination related to the defect energy level. The obvious size-dependent effect also proves that the donor-acceptor pair (donor-acceptorpair,-acceptor pair) recombination is one of the main recombination processes of this kind of quantum dots, but not the dominant one. The temperature-dependent photoluminescence spectra and time-resolved photoluminescence spectra of ZnCuInS/ZnSe/ZnS core / shell quantum dots, CuInS2 quantum dots with different ratio of Cu to In and CuInS2/ZnS core / shell quantum dots were measured. Through the analysis of many kinds of spectra, we have studied the recombination mechanism of this kind of quantum dots in depth. It is also proposed that there are many kinds of recombination processes in the quantum dots, including the recombination related to the surface states, the recombination between the conduction band and the defect level, and the DAP recombination. Then, we change the ratio of Cu to In in CuInS2 QDs and CuInS2/ZnS core / shell QDs and analyze their temperature dependent photoluminescence spectra. The recombination between conduction band and defect level and the proportion of DAP recombination in DAP recombination increased. 3. Based on the study of temperature characteristics of ZnCuInS/ZnSe/ZnS core / shell quantum dots, we apply them to temperature sensing of micro-region and area array. The coefficient (temperature coefficient) of photoluminescence intensity of the quantum dot with temperature is 0.66%, and the temperature coefficient of photoluminescence of the quantum dot is 0.66%. An optical fiber spectrometer and a high power microscope are used to measure the temperature of the micro-region and the area array by measuring the photoluminescence spectra of the quantum dots in the micron region. The test error of the system is less than 2%. 4. Preparation of quantum dot light emitting diode (QD-LED) and study of temperature effect. Three sizes of ZnCuInS/ZnSe/ZnS core / shell quantum dots were assembled with GaN light emitting diodes to produce QD-LED. with red, yellow and green light. Under the operating voltage of 2.6 V, the power efficiency of the corresponding three colors of QD-LED is 14.0 lm / W, 47.1lm / W and 62.4lm / w, respectively. By analyzing the color coordinates, spectral peak position, half-peak width and power efficiency of QD-LED at different operating voltages, we have studied the temperature effect of QD-LED. The results show that the thermal quenching caused by the rising surface temperature of light emitting diodes is an important factor for the decrease of the power efficiency of the devices with the increase of the voltage. At the same time, the temperature coefficients of the emission peaks of ZnCuInS/ZnSe/ZnS core / shell QDs are very low (the temperature coefficients of red, yellow and green QDs are 0.022 nm C, 0.050 nm C and 0.068nm/oC, respectively). This makes the color coordinates of QD-LED change little under different working voltages, which proves that the color stability of the QD-LED is good. Compared with the corresponding data of CdSe QDs, ZnCuInS/ZnSe/ZnS core / shell QDs are more suitable for down-conversion materials in terms of color stability.
【學(xué)位授予單位】:吉林大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2015
【分類號(hào)】:O471.1
【共引文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王遠(yuǎn)強(qiáng);李耀剛;王宏志;張青紅;包一鳴;姬宇;;CuInS_2量子點(diǎn)的制備及其敏化太陽(yáng)能電池研究進(jìn)展[J];材料導(dǎo)報(bào);2013年07期
2 杜凱;張金花;王峰;鄒繼偉;許圣杰;吳悠;余大斌;;Ⅱ-Ⅵ族量子點(diǎn)的制備和非線性光學(xué)性質(zhì)研究進(jìn)展[J];材料導(dǎo)報(bào);2013年17期
3 Geeta Rani;P.D.Sahare;;Structural and Spectroscopic Characterizations of ZnO Quantum Dots Annealed at Different Temperatures[J];Journal of Materials Science & Technology;2013年11期
4 張躍宗;李春霞;王瑞春;莊四祥;胡宏生;;直下式LED背光TV色域的研究[J];光電子技術(shù);2014年01期
5 謝翠萍;向衛(wèi)東;駱樂;鐘家松;趙斌宇;梁曉娟;;AgInS_2量子點(diǎn)研究進(jìn)展[J];功能材料;2014年04期
6 陳峗漢;張雪;周潔;曹進(jìn);張建華;殷錄喬;朱文清;;紅、綠CdSe@ZnS量子點(diǎn)配比對(duì)三波段標(biāo)準(zhǔn)白光LED器件的影響[J];發(fā)光學(xué)報(bào);2014年08期
7 張馮章;李湘奇;鄔小鳳;范希梅;張朝良;;Influence of deposition temperature on CdS thin films by polyol method[J];Journal of Semiconductors;2014年08期
8 陳肖慧;袁曦;華杰;趙家龍;李海波;;殼層相關(guān)的CdSe核/殼量子點(diǎn)發(fā)光的熱穩(wěn)定性[J];發(fā)光學(xué)報(bào);2014年09期
9 姜青松;朱月華;王海波;施豐華;卓寧澤;李東志;湯坤;;水相合成CdTe量子點(diǎn)及其性能表征[J];功能材料;2014年16期
10 覃愛苗;蔣麗;蔣坤朋;廖雷;;基于水相法制備CdTe量子點(diǎn)及其功能化組裝研究進(jìn)展[J];材料導(dǎo)報(bào);2014年15期
相關(guān)碩士學(xué)位論文 前10條
1 勒孚河;銪激活的堿土金屬磷酸鹽基質(zhì)發(fā)光材料的制備及其發(fā)光性能研究[D];新疆大學(xué);2011年
2 何莎莎;ZnO薄膜的低溫溶液法制備及在光電器件中應(yīng)用[D];浙江大學(xué);2013年
3 彭鵬;Sr_3AlO_4F:Ce~(3+)熒光粉及其固溶體的制備和發(fā)光性能研究[D];北京有色金屬研究總院;2013年
4 丁倩倩;鎳基貴金屬納米材料用于表面增強(qiáng)拉曼光譜基底研究[D];安徽大學(xué);2013年
5 齊曉妍;Gd~(3+)/Yb~(3+)摻雜ZnO量子點(diǎn)雙模式MRI/CT成像探針[D];長(zhǎng)春工業(yè)大學(xué);2013年
6 黃云波;納米顆粒一維光子晶體的制備及其在控制發(fā)光方面的應(yīng)用[D];上海師范大學(xué);2013年
7 趙婕;聚合物太陽(yáng)能電池中電子緩沖層的優(yōu)化[D];南昌大學(xué);2013年
8 高冬梅;超聲催化1,2-二苯乙醇類化合物的合成及抑菌活性的評(píng)價(jià)[D];西北農(nóng)林科技大學(xué);2013年
9 周婷;鋰離子電池負(fù)極材料Li_4Ti_5O_(12)的改性及電化學(xué)性能研究[D];福建師范大學(xué);2013年
10 林算治;摻鋁氧化鋅透明導(dǎo)電薄膜上無(wú)催化劑生長(zhǎng)ZnO納米棒陣列及其光學(xué)特性研究[D];福建師范大學(xué);2013年
本文編號(hào):2436610
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2436610.html