基于磁流體力學(xué)的微流控研究
發(fā)布時(shí)間:2019-01-08 10:56
【摘要】:為了提升傳統(tǒng)磁流體力學(xué)微泵在微流體系統(tǒng)中的表現(xiàn),通過(guò)集成平面電磁鐵實(shí)現(xiàn)磁流體力學(xué)微泵的微型化。對(duì)構(gòu)建的新型磁流體力學(xué)微泵進(jìn)行仿真模擬,獲得優(yōu)化的結(jié)構(gòu)設(shè)計(jì)。采用微加工方法實(shí)現(xiàn)磁流體力學(xué)微泵的制作,并將磁流體力學(xué)微泵與阻抗傳感器進(jìn)行集成,實(shí)現(xiàn)了對(duì)無(wú)機(jī)溶液和生物樣品的抽吸和實(shí)時(shí)阻抗測(cè)試功能,結(jié)果表明制作的磁流體力學(xué)微泵能夠應(yīng)用于生物檢測(cè)領(lǐng)域。通過(guò)對(duì)建立的磁流體力學(xué)微泵進(jìn)行COMSOL軟件仿真模擬,耦合多個(gè)物理場(chǎng),包括電磁模塊、熱力學(xué)模塊和層流模塊,研究磁流體力學(xué)微泵的基本原理。本文研究了在平面電磁鐵磁流體力學(xué)微泵中,流速、磁通密度在不同深寬比微通道中的分布;不同線圈材料和磁軛材料對(duì)磁流體力學(xué)微泵抽吸性能的影響;研究了焦耳熱、電滲效應(yīng)和壁面滑移條件對(duì)磁流體力學(xué)微泵的影響。結(jié)果表明深寬比為1:1的微通道具有較優(yōu)表現(xiàn),能夠達(dá)到0.94mL/min的流速。在壁面滑移長(zhǎng)度為10μm的條件下,流速能夠達(dá)到16.3mm/s。隨著滑移長(zhǎng)度從10μm增至90μm,流體的平均溫度從36.0℃降至30.2℃。利用有限元分析研究不同的電磁線圈形狀和磁軛材料對(duì)電磁鐵性能的影響,采用微加工方法制作實(shí)際的平面型電磁鐵,并且通過(guò)磁性顆粒進(jìn)行表征,研究制作的平面電磁鐵對(duì)磁性顆粒的控制能力。結(jié)果表明蜿蜒型的線圈結(jié)構(gòu)能夠產(chǎn)生大的磁場(chǎng)梯度,方形和圓形的線圈結(jié)構(gòu)均能產(chǎn)生較均勻的磁場(chǎng)。具有較高磁導(dǎo)率的磁軛材料能夠產(chǎn)生較強(qiáng)的磁場(chǎng),但是為了產(chǎn)生Z軸方向的磁場(chǎng),需要求磁軛材料具有垂直磁化能力。本文采用CoFeB合金作為磁軛材料,通過(guò)與常用的鎳材料的對(duì)比,結(jié)果表明CoFeB合金作為磁軛材料具有較強(qiáng)的垂直磁化性能,能夠有效地進(jìn)行磁性顆粒的控制。將制作的電磁鐵和電極集成,成功制作磁流體力學(xué)微泵,并進(jìn)行聚苯乙烯微球的抽吸,結(jié)果表明制作的磁流體力學(xué)微泵能夠有效抽吸樣品溶液。通過(guò)與其它各類傳感元件的集成,研發(fā)的磁流體力學(xué)微泵還能夠?qū)崿F(xiàn)更加靈活的控制和更廣泛的應(yīng)用,如具有應(yīng)用于藥物緩釋系統(tǒng)、生化分析和環(huán)境檢測(cè)等領(lǐng)域的潛力。本文研究了阻抗傳感器與新型的磁流體力學(xué)微泵的集成,采用SU-8與PDMS進(jìn)行完整密封,以實(shí)現(xiàn)在同一晶片上實(shí)現(xiàn)樣品的預(yù)處理與樣品檢測(cè)的功能。分別制作了四種不同結(jié)構(gòu)的電極,采用電化學(xué)工作站對(duì)不同濃度的鹽溶液、不同濃度的聚苯乙烯微球溶液、不同粒徑大小的聚苯乙烯微球溶液和不同濃度的細(xì)胞溶液在1Hz至100kHz范圍內(nèi)進(jìn)行了阻抗測(cè)試,研究分析不同電極結(jié)構(gòu)對(duì)阻抗測(cè)試的影響。結(jié)果表明叉指型電極具有較高的靈敏度,能夠有效區(qū)別不同濃度的細(xì)胞溶液。
[Abstract]:In order to improve the performance of the traditional MHD micropump in the microfluid system, the magnetohydrodynamic micropump is miniaturized by integrating the planar electromagnet. The new MHD micropump was simulated and optimized structure design was obtained. The fabrication of MHD micropump is realized by using micromachining method. The MHD micropump is integrated with impedance sensor to realize the functions of suction and real time impedance measurement of inorganic solution and biological sample. The results show that the MHD micropump can be used in the field of biological detection. The basic principle of MHD micropump was studied by COMSOL software simulation and coupled with many physical fields, including electromagnetic module, thermodynamics module and laminar flow module. In this paper, the distribution of velocity and flux density in different aspect ratio microchannels in planar electromagnet magnetohydrodynamic micropump, the influence of different coil materials and magnetic yoke materials on the pumping performance of magnetic fluid micropump are studied. The effects of Joule heat, electroosmotic effect and wall slip conditions on MHD micropump were studied. The results show that the microchannel with a aspect ratio of 1:1 has a better performance and can reach the flow rate of 0.94mL/min. When the slip length of the wall is 10 渭 m, the velocity of flow can reach 16.3 mm / s. With the slip length increasing from 10 渭 m to 90 渭 m, the average temperature of the fluid decreases from 36.0 鈩,
本文編號(hào):2404509
[Abstract]:In order to improve the performance of the traditional MHD micropump in the microfluid system, the magnetohydrodynamic micropump is miniaturized by integrating the planar electromagnet. The new MHD micropump was simulated and optimized structure design was obtained. The fabrication of MHD micropump is realized by using micromachining method. The MHD micropump is integrated with impedance sensor to realize the functions of suction and real time impedance measurement of inorganic solution and biological sample. The results show that the MHD micropump can be used in the field of biological detection. The basic principle of MHD micropump was studied by COMSOL software simulation and coupled with many physical fields, including electromagnetic module, thermodynamics module and laminar flow module. In this paper, the distribution of velocity and flux density in different aspect ratio microchannels in planar electromagnet magnetohydrodynamic micropump, the influence of different coil materials and magnetic yoke materials on the pumping performance of magnetic fluid micropump are studied. The effects of Joule heat, electroosmotic effect and wall slip conditions on MHD micropump were studied. The results show that the microchannel with a aspect ratio of 1:1 has a better performance and can reach the flow rate of 0.94mL/min. When the slip length of the wall is 10 渭 m, the velocity of flow can reach 16.3 mm / s. With the slip length increasing from 10 渭 m to 90 渭 m, the average temperature of the fluid decreases from 36.0 鈩,
本文編號(hào):2404509
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2404509.html
最近更新
教材專著