基于第一性原理研究釬鋅礦氮化物及其合金中的聲子輸運
[Abstract]:Wurtzite aluminum nitride (A1N), aluminum nitride (GaN), and aluminum nitride (InN) and its alloys are widely used in devices such as photovoltaic devices, solar cells and high-frequency transistors. In these device applications, temperature is an important factor affecting performance, reliability, and life. The thermal conductivity of the material determines its thermal conductivity, so the thermal conductivity of the material is an important part of the thermal management of the device. Although the thermal conductivity can be obtained by experimental measurement, the thermal conductivity of wurtzite AIN, GaN, InN and its alloys is still insufficient due to the limitation of the growth quality of the experimental samples, especially wurtzite InN. In the micro, the carrier of the crystal heat conduction is the sound, and the motion process is described by the acoustic subBoltzmann equation. The sound is scattered in the process of transport. According to the scattering sources, the scattering of the samples and the scattering of the samples are mainly divided into the lattice's own intrinsic scattering and the sample-related scattering. This sign-scattering determines the intrinsic thermal conductivity of the lattice and has been the difficult point of the study. Recently, this sign-scattering can be calculated accurately by the first principle. The thermal conductivity and dimensional effect of wurtzite AlN, GaN, InN and its alloys are studied in combination with the first principle calculation and the solution of the acoustic subBoltzmann equation. The results show that in the horizontal and vertical directions of wurtzite crystal lattice at room temperature, the thermal conductivity of A1N in natural isotopes is 301 Wm-1K-1 and 287Wm-1K-1, respectively. The thermal conductivity of GaN is 244 Wm-1K-1 and 277Wm-1K-1 respectively. The thermal conductivity of InN is 133Wmi1K-1 and 152Wm-1K-1, respectively. The calculation of the thermal conductivity at different temperatures shows that the anisotropy of the wurtzite AlN thermal conductivity is very small and can be regarded as an isotropic material, while the wurtzite GaN and the InN thermal conductivity have non-negligible anisotropy, especially at low temperature conditions. The anisotropy of the thermal conductivity coefficient is related to the square of the sound sub-velocity in different directions, and the anisotropy of the thermal conductivity coefficient is found to be mainly contributed by the low-frequency sound and mainly from the high-frequency transverse wave acoustic branch by calculating the distribution of the square velocity to the frequency. The cumulative function of the coefficient of thermal conductivity on the mean free path and the change of the thermal conductivity of the film with the thickness indicate that the size effect of wurtzite AlN, GaN and InN can last to several tens of microns. Based on the first principle, the related parameters and the virtual lattice model of wurtzite AlN, GaN and InN are calculated, and the changes of the thermal conductivity of wurtzite AlxGa1-xN, InxGa1-xN and InXAl1-xN with the alloy concentration are studied. it has been found that even a very small concentration of the alloy can greatly reduce the thermal conductivity. For example, after only 1% of Al or In atoms are doped in wurtzite GaN, the thermal conductivity is reduced by 60%. When the concentration of the alloy reaches a value of 0.2 to 0.8, the thermal conductivity is very small with the change of the alloy concentration. At room temperature, the minimum thermal conductivity of AlxGa1-xN is 18 Wm-1K-1 and 22Wm-1K-1, respectively, and the minimum thermal conductivity of InxGa1-xN is 22Wm-1K-1 and 27Wm-1K-1, respectively. The minimum thermal conductivity of InxGa1-xN is 8Wm-1K-1 and 10Wm-1K-1, respectively. the anisotropy is greater than the respective component material, which is due to the fact that the suppression of the low-frequency sound sub-band by the alloy is smaller than the high-frequency sound, resulting in an increase in the relative contribution of the anisotropic larger low-frequency sound. the size effect of the alloy can likewise continue to several tens of microns and the thermal conductivity will be reduced by half when the size is reduced to 100 nm. In the solution of the acoustic-son Boltzmann equation, the relaxation time approximation will underestimate the thermal conductivity, and the Callaway model is widely used as a modification. However, the accuracy of the Callaway model has not been tested. Based on the results of the first principle, the accuracy of the Callaway model is verified by using silicon, diamond and wurtzite AlN as the research object. The results show that the Callaway model can not guarantee the accurate prediction of the thermal conductivity. At the same time, through the calculation of the low-frequency sound sub-relaxation time, the relationship between the relaxation time and the frequency of the S-wave and the longitudinal-wave acoustic subU-scattering in the three lattices is 1/ 1/ 3, and the N-scattering process is in accordance with the relationship of 1/ 1 and 1/ 2.
【學(xué)位授予單位】:華中科技大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O469
【相似文獻】
中國期刊全文數(shù)據(jù)庫 前10條
1 ;高頻聲子——一種新的研究工具[J];壓電與聲光;1972年05期
2 甘子釗;多聲子隧道電流理論[J];北京大學(xué)學(xué)報(自然科學(xué));1963年02期
3 白玉海,裴力偉;固體中高頻聲子的激勵[J];物理;1985年07期
4 李中奇;聲子氣體及其熱力學(xué)特征[J];株洲師范高等?茖W(xué)校學(xué)報;2002年05期
5 陳序良;周敏;姚曼;Phillpot S R;;聲子頻率對同位素摻雜硅聲子散射的影響[J];原子與分子物理學(xué)報;2008年06期
6 薩本豪;張錫珍;李祝霞;施義晉;;核場論中聲子重整化的初步研究[J];高能物理與核物理;1980年03期
7 賈惟義,裴力偉;特超聲聲子的激光產(chǎn)生和熒光檢測[J];物理學(xué)進展;1984年02期
8 白玉海;關(guān)于高頻聲子的近期研究進展[J];聲學(xué)學(xué)報;1985年02期
9 何安明;生物大分子聲子轉(zhuǎn)移理論的初步研究[J];西南師范學(xué)院學(xué)報(自然科學(xué)版);1985年01期
10 白玉海;用于檢測寬帶聲子的超導(dǎo)聲子檢測器[J];低溫物理;1985年02期
中國重要會議論文全文數(shù)據(jù)庫 前4條
1 姜迅東;李林;胡榮澤;;聲子的量子理論[A];中國顆粒學(xué)會2006年年會暨海峽兩岸顆粒技術(shù)研討會論文集[C];2006年
2 江光佐;;在極性晶體的非對稱雙立體結(jié)中的光學(xué)聲子模式[A];數(shù)學(xué)·物理·力學(xué)·高新技術(shù)研究進展(一九九六·第六期)——中國數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究會第6屆學(xué)術(shù)研討會論文集[C];1996年
3 王艷鋒;汪越勝;;含十字型孔的二維正方排列聲子功能材料聲學(xué)帶隙的研究[A];北京力學(xué)會第17屆學(xué)術(shù)年會論文集[C];2011年
4 朱夏明;吳惠楨;原子健;孔晉芳;沈文忠;;摻氮ZnO的多聲子共振Raman散射光譜研究[A];第十五屆全國光散射學(xué)術(shù)會議論文摘要集[C];2009年
中國重要報紙全文數(shù)據(jù)庫 前5條
1 本報首席記者 張懿;用“聲子學(xué)”引領(lǐng)熱技術(shù)突破[N];文匯報;2012年
2 常麗君;《自然》介紹新興聲子學(xué)研究八個主題領(lǐng)域[N];科技日報;2013年
3 記者 馮衛(wèi)東;新加坡推出聲子計算機概念[N];科技日報;2007年
4 馬晨;計算機可以依靠熱能運行嗎?[N];科技日報;2008年
5 沈英甲;讓浪費的熱能轉(zhuǎn)換成電流[N];科技日報;2007年
中國博士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 楊愛超;聲子晶體諧振器及其聲能采集器研究[D];重慶大學(xué);2015年
2 陳學(xué)坤;準(zhǔn)一維雜化納米結(jié)構(gòu)聲子輸運的分子動力學(xué)研究[D];湖南大學(xué);2016年
3 周五星;準(zhǔn)一維納米結(jié)構(gòu)熱電轉(zhuǎn)換機理及其性能調(diào)控[D];湖南大學(xué);2015年
4 孫紅義;新型二維材料的聲子輸運與熱機械性質(zhì)的數(shù)值模擬[D];南京大學(xué);2016年
5 張立軍;高壓下幾種材料中聲子及電子—聲子耦合的第一性原理研究[D];吉林大學(xué);2008年
6 李科敏;低維納米結(jié)構(gòu)中聲學(xué)聲子的輸運性質(zhì)研究[D];湖南大學(xué);2009年
7 茍秉屏;聲學(xué)聲子輔助的硅基雜質(zhì)電子自旋量子比特的量子控制[D];河北師范大學(xué);2011年
8 聶六英;低維量子結(jié)構(gòu)中的聲學(xué)聲子輸運與熱導(dǎo)性質(zhì)研究[D];湖南大學(xué);2007年
9 齊維開;二維膠體的相變及聲子研究[D];蘭州大學(xué);2011年
10 王新軍;半導(dǎo)體低維量子結(jié)構(gòu)中電子態(tài)、聲子態(tài)及其相互作用性質(zhì)研究[D];湖南大學(xué);2006年
中國碩士學(xué)位論文全文數(shù)據(jù)庫 前10條
1 付佳琦;第一性原理研究纖鋅礦結(jié)構(gòu)AIN和InN的聲子及熱力學(xué)性質(zhì)[D];內(nèi)蒙古大學(xué);2015年
2 張愛娟;低維系統(tǒng)中聲子弛豫過程與熱輸運關(guān)系研究[D];揚州大學(xué);2016年
3 潘賢群;半導(dǎo)體相干聲學(xué)聲子的超快產(chǎn)生與探測[D];華東師范大學(xué);2013年
4 盧建奪;電子和聲子在納米器件中輸運性質(zhì)的研究[D];華中科技大學(xué);2006年
5 徐丹峰;基于聲子光柵調(diào)制的聲子激光器性能分析[D];南京郵電大學(xué);2014年
6 楊玉榮;超晶格GaAs/AlAs的熱力學(xué)性質(zhì)研究[D];湘潭大學(xué);2006年
7 蔣英;金納米棒的超快電子—聲子耦合動力學(xué)研究[D];吉林大學(xué);2010年
8 莫媛;準(zhǔn)周期聲子腔對半導(dǎo)體納米線中聲子輸運影響的理論研究[D];湖南大學(xué);2010年
9 呂蘇娜;應(yīng)用聲子晶體濾波器改善聲子激光器線寬的研究[D];南京郵電大學(xué);2014年
10 趙亞妮;納米體系中的電聲子相互作用研究[D];陜西師范大學(xué);2010年
,本文編號:2401352
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2401352.html