高壓下光伏及多鐵儲(chǔ)能材料的第一性原理研究
[Abstract]:The pressure has a great influence on the composition and properties of the substance. The high pressure will shorten the atomic distance of the material, change the chemical valence state of the atom, transfer the charge transfer between the atoms, and cause the crystal structure to change, thus causing some special chemical reactions. Therefore, high-pressure physics is an important means of synthesizing and discovering new materials. The paper takes the high-pressure physics as the fulcrum, which mainly includes two parts. The first part is the research work of the photovoltaic material under high pressure, introduces the basic properties of the photovoltaic material and the method of the research and analysis, and uses the first principle to study the theory of AgInS _ 2 in the compound of the group I-III-VI. It is of great significance to find and design a new type of photovoltaic semiconductor material. The second part is based on the basic theory and application of the multi-ferromagnet electric material, and in combination with the latest development of the research at home and abroad, the properties of the multi-iron material DyNiO _ 3 under high oxygen pressure and high pressure are studied by the first principle method and the micro-physical mechanism of the magnetoelectric coupling effect is analyzed. The theoretical basis is laid for the design of this new information storage material. The specific content of this thesis is as follows: First of all, the new phase structure prediction under high pressure is carried out based on the first principle, based on the first principle, based on the first principle of the AgIn S _ 2 material in the hot spot I-III-VI compound of the present photovoltaic material. Previous experimental studies have found that CuInS _ 2 will transition to a cubic phase structure at a high pressure of 9.5GPa and with some other changes in properties. However, theoretical studies such as the crystal structure and the properties of the electron structure under the high pressure of the I-III-VI compound are rare. The theoretical simulation shows that the structure of AgIn S _ 2 at the pressure of 12. 5GPa will transition from the tetragonal phase (symmetry I-42d) to the cubic phase (symmetry is Fd-3m), which is in agreement with the conclusions of the experiment, but the phase change pressure is higher than the phase change pressure of CuInS _ 2 by 9.5GPa. In order to get a more accurate band gap, we used the hybrid HSE06 method to calculate the cubic phase band gap of AgInS _ 2 as 1. 2eV, which is closer to the ideal band gap (1. 4eV) than the band gap (about 2.0eV) of the tetragonal phase. In the calculation of the acoustic subspectrum, we find that there is no virtual frequency in the Brillouin zone, which indicates that the structure can satisfy the dynamic stability. At the same time, we used the electronic local function and the charge density of the system to analyze the form of the bond between the atoms of the compound. The optical properties of different structures under normal pressure and high pressure are compared. Based on the design angle of the new material, we use the density functional theory, the perovskite type DyNiO _ 3 synthesized with the high oxygen pressure as the research object, and the influence of U value on the property of the system in the GGA + U method is analyzed. The electronic structure, chemical bond, magnetism and ferroelectricity of the compound are studied and the source of its ferroelectric property is analyzed. The results show that the symmetry of the DyNiO _ 3 system under high oxygen pressure after spin-polarization and anti-ferromagnetic structure is changed from P21/ n to P21. The calculated electron structure properties show that the band gap of the system is 0. 715eV, which is an indirect bandgap compound. The Ni atoms in the system have the charge disproportionation. The magnetic moments of the Ni1 and Ni2 atoms are respectively 1. 703. mu.B and 0. 7710. m u.B. The coupling between the Ni-3d and the O-2p states is also found from the analysis of the system state density map. Based on the first principle, we also calculated the effective charge and the electronic local function of the system, and determined that the Ni-O bond is an ionic bond. The spontaneous polarization of the system is 6.78. m u.C/ cm2, along the direction of the lattice b axis, and the charge order of the lattice point and the key center in the system results in the formation of the ferroelectric in DyNiO _ 3. Finally, based on the first principle, the crystal structure, electronic structure, magnetism and ferroelectric property of DyNiO _ 3 under high pressure are studied. The results show that the crystal structure of DyNiO _ 3 has changed under high pressure, and the lattice constant and volume decrease with the increase of the pressure from 0GPa to 10GPa. Under the pressure of 10GPa, the crystal symmetry of DyNiO _ 3 is changed from P21 to P21/ n, and the band gap is changed from 0. 715eV at high oxygen pressure to 1. 25eV, and is an indirect bandgap compound. Through the study of the density of the system state, we have also found that the magnetic moment of the Ni1 atom bit is the same at high pressure, while the magnetic distance of the Ni2 atomic bit decreases with the increase of the pressure at 0-10GPa, resulting in the change of the magnetic structure of the system. When the pressure is greater than 6GPa, the magnetic moment of the Ni2 atomic bit disappears. the change of the magnetic structure of the crystal structure of the system eliminates the charge order of the key center in the system, leads to the disappearance of the ferroelectric property, and can realize the regulation of the ferroelectric property of the system by high voltage.
【學(xué)位授予單位】:長(zhǎng)春理工大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O521
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 李震宇;楊金龍;;新材料物性的第一性原理研究(英文)[J];中國(guó)科學(xué)院研究生院學(xué)報(bào);2009年03期
2 高巍;朱嘉琦;武洪臣;張華芳;崔向中;;四面體非晶碳結(jié)構(gòu)建模的第一性原理模擬方法[J];功能材料;2010年S2期
3 盧金煉;曹覺(jué)先;;單個(gè)鈦原子儲(chǔ)氫能力和儲(chǔ)氫機(jī)制的第一性原理研究[J];物理學(xué)報(bào);2012年14期
4 李培芳;包鋼;;元素氯高壓屬性的第一性原理研究[J];內(nèi)蒙古民族大學(xué)學(xué)報(bào)(自然科學(xué)版);2013年01期
5 甄海龍;高海;劉紅梅;林巧文;;P-碳的電學(xué)、力學(xué)性質(zhì)的第一性原理預(yù)測(cè)[J];山西大同大學(xué)學(xué)報(bào)(自然科學(xué)版);2014年01期
6 徐雷;戴振宏;王森;劉兵;孫玉明;王偉田;;氟化硼碳平面的第一性原理研究[J];物理學(xué)報(bào);2014年10期
7 熊志華,王建敏,雷敏生;用第一性原理研究金屬銅的電子結(jié)構(gòu)[J];江西科學(xué);2005年03期
8 李青坤;王彪;王強(qiáng);王銳;;碳摻雜二氧化鈦光催化性能的第一性原理研究[J];黑龍江大學(xué)自然科學(xué)學(xué)報(bào);2007年04期
9 陶輝錦;陳偉民;王赫男;;鎳晶格穩(wěn)定性的第一性原理研究[J];材料導(dǎo)報(bào);2009年18期
10 高巍;鞏水利;朱嘉琦;馬國(guó)佳;;摻氮四面體非晶碳的第一性原理研究[J];物理學(xué)報(bào);2011年02期
相關(guān)會(huì)議論文 前10條
1 姜曉庶;Walter R.L.Lambrecht;;半導(dǎo)體非線性光學(xué)材料的第一性原理研究[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(1)[C];2007年
2 鄭曉;陳冠華;;開(kāi)放電子體系的第一性原理方法[A];中國(guó)化學(xué)會(huì)第九屆全國(guó)量子化學(xué)學(xué)術(shù)會(huì)議暨慶祝徐光憲教授從教六十年論文摘要集[C];2005年
3 宋慶功;褚勇;王艷波;耿德平;郭艷蕊;;有序α-(Al_(1/4)Cr_(3/4))_2O_3的結(jié)構(gòu)及其穩(wěn)定性研究[A];數(shù)學(xué)·力學(xué)·物理學(xué)·高新技術(shù)交叉研究進(jìn)展——2010(13)卷[C];2010年
4 孫學(xué)勤;周樹(shù)蘭;林娜;李良;張玉芬;趙顯;;關(guān)于金剛石的硬度的第一性原理研究[A];中國(guó)化學(xué)會(huì)第九屆全國(guó)量子化學(xué)學(xué)術(shù)會(huì)議暨慶祝徐光憲教授從教六十年論文摘要集[C];2005年
5 周安;舒翠翠;劉立勝;翟鵬程;;雙填充方鈷礦電子結(jié)構(gòu)和電傳輸性能的第一性原理研究[A];2011中國(guó)材料研討會(huì)論文摘要集[C];2011年
6 曾凡林;孫毅;;PVDF單鏈拉伸的第一性原理模擬[A];第七屆海峽兩岸工程力學(xué)研討會(huì)論文摘要集[C];2011年
7 潘紅亮;王月花;;鐵酸鉍光學(xué)特性的第一性原理研究[A];《硅酸鹽學(xué)報(bào)》創(chuàng)刊50周年暨中國(guó)硅酸鹽學(xué)會(huì)2007年學(xué)術(shù)年會(huì)論文摘要集[C];2007年
8 宋慶功;王延峰;康建海;嚴(yán)慧羽;;第一性原理方法在插層化合物L(fēng)i_xTiS_2結(jié)構(gòu)與性能研究中的應(yīng)用[A];中國(guó)數(shù)學(xué)力學(xué)物理學(xué)高新技術(shù)交叉研究學(xué)會(huì)第十二屆學(xué)術(shù)年會(huì)論文集[C];2008年
9 劉紅;鄧?yán)?劉雷;杜建國(guó);;MgSiO_3熔體高溫高壓狀態(tài)方程的第一性原理分子動(dòng)力學(xué)研究[A];中國(guó)礦物巖石地球化學(xué)學(xué)會(huì)第14屆學(xué)術(shù)年會(huì)論文摘要專輯[C];2013年
10 平飛林;蔣剛;張林;朱正和;;~3He對(duì)LaNi_5儲(chǔ)氚性能影響的第一性原理研究[A];第八屆全國(guó)核靶技術(shù)學(xué)術(shù)交流會(huì)論文摘要集[C];2004年
相關(guān)博士學(xué)位論文 前10條
1 孫金平;水溶液環(huán)境羥基磷灰石/鈦界面結(jié)構(gòu)與性質(zhì)第一性原理研究[D];哈爾濱工業(yè)大學(xué);2014年
2 龔奎;新型二維半導(dǎo)體材料及自旋相關(guān)器件量子輸運(yùn)的第一性原理研究[D];北京科技大學(xué);2016年
3 崔琳;Si-C-N三元系中新型亞穩(wěn)相的第一性原理研究[D];燕山大學(xué);2015年
4 孫瑜;若干半導(dǎo)體非晶化相變的結(jié)構(gòu)及化學(xué)鍵演化規(guī)律的第一性原理研究[D];吉林大學(xué);2016年
5 李晨輝;納米線,納米島和薄膜生長(zhǎng)機(jī)理的第一性原理研究[D];鄭州大學(xué);2016年
6 李國(guó)豹;三種二次電池正極材料的第一性原理研究[D];大連理工大學(xué);2016年
7 姚路馳;半導(dǎo)體納米線成核生長(zhǎng)機(jī)理的第一性原理研究[D];中國(guó)科學(xué)院研究生院(上海技術(shù)物理研究所);2016年
8 容青艷;摻雜改善BiFeO_3磁性的第一性原理研究[D];湖南大學(xué);2016年
9 寧鋒;基于InAs納米體系的電子結(jié)構(gòu)和輸運(yùn)特性第一性原理研究[D];湖南大學(xué);2015年
10 張小樂(lè);基于第一性原理的深紫外氟化物晶體及復(fù)雜氧化物的理論研究[D];上海交通大學(xué);2015年
相關(guān)碩士學(xué)位論文 前10條
1 尹夢(mèng)園;摻雜CoO與鐵磁體/MoS_2界面的電子結(jié)構(gòu)和磁性的第一性原理研究[D];天津理工大學(xué);2015年
2 牛之慧;單相多鐵性體CaMn_7O_(12)的第一性原理研究[D];昆明理工大學(xué);2015年
3 金元俊;壓力下122系鐵基超導(dǎo)體的第一性原理研究[D];華南理工大學(xué);2015年
4 李少媛;不同泛函下的MPc/Au(111)吸附體系的第一性原理研究[D];南開(kāi)大學(xué);2015年
5 柴豐濤;Fe_2(MoO_4)_3的負(fù)膨脹行為及嵌Li/Na電化學(xué)過(guò)程的第一性原理研究[D];浙江理工大學(xué);2016年
6 于劉洋;CuInS_2和CuIn_(1-x)Ga_xS_2光電材料的制備及其能帶計(jì)算[D];山東建筑大學(xué);2016年
7 高強(qiáng);若干自旋電子學(xué)材料性質(zhì)第一性原理研究[D];蘭州大學(xué);2016年
8 阮興祥;In摻雜GaN納米材料光電特性的理論研究[D];延安大學(xué);2015年
9 蔣先云;Cu、Y和Ce摻雜改進(jìn)CdS光學(xué)性質(zhì)第一性原理研究[D];魯東大學(xué);2016年
10 孫桂鵬;摻雜及空位缺陷對(duì)SnO_2和TiO_2光電性能的影響[D];魯東大學(xué);2016年
,本文編號(hào):2389246
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2389246.html