熱機(jī)載荷作用下功能梯度曲梁和圓柱殼的靜態(tài)響應(yīng)
[Abstract]:The static and dynamic response of a functionally graded beam shell structure is an important part of the research on non-uniform solid mechanics. In this paper, the static mechanical responses of curved beams and cylindrical shells with functionally gradient variable curvature are studied by means of theoretical analysis and numerical calculation, which are mainly composed of two parts. 1. Based on the exact geometric nonlinear theory and the first order shear deformation theory of elastic curved beam plane problem, the axis elongation and transverse shear deformation are accurately considered in the geometric equation. The differential governing equations of large elastic deformation of functionally gradient Euler curved beams with variable curvature and Timoshenko curved beams under mechanical and thermal loads are established respectively. The governing differential equation is variable because the curvature can be taken into account and the stiffness coefficient related to curvature is a function of the arc length coordinate of the axis. The basic unknown is expressed as the function of the axis arc length coordinate before deformation, and the arc length is represented by the parameter variable of the curved beam axis parameter equation. The two-point boundary value problem of strongly nonlinear ordinary differential equations with multiple unknowns is solved numerically by shooting method. The problem of large deformation and bending of functionally gradient elliptic arc Euler curved beams under different boundary conditions is quantitatively analyzed, and the material gradient exponents are discussed. The influence of temperature load parameter and structure geometry parameter on the internal force and deformation of curved beam. Using the same geometric nonlinear mathematical model, the nonlinear stability of elliptic arc Euler curved beams with fixed ends under different mechanical loads is studied, and the equilibrium path characteristic curves of the curved beams are given. Then, the problem of large thermoelastic deformation of functionally gradient cycloid and elliptic arc Timoshenko curved beams under uniform and transverse non-uniform heating is numerically solved. The solutions of Timoshenko curved beams and corresponding Euler curved beams are compared. The influence of transverse shear deformation on the internal force and deformation of curved beam is analyzed. The buckling behavior of functionally gradient cylindrical shells under thermal loading is studied on the assumption that the material properties and the temperature field of cylindrical shells change only along the thickness direction. Based on the classical linear thin shell theory, a dimensionless governing equation of thermal buckling expressed by geometric midplane displacement is derived. By using the method of separating variables, the governing equations are transformed from complex partial differential equations to ordinary differential equations with unknown functions coupled with each other. The boundary conditions are considered as simple support at both ends and fixed at both ends. The two point boundary value problem is solved by shooting method, and the critical buckling temperature load is obtained. The critical buckling temperature of functionally graded cylindrical shells under uniform and non-uniform heating conditions is discussed. The critical buckling temperature of functionally graded cylindrical shells with the material gradient exponent n, thickness to diameter ratio 未 = h / R and aspect diameter ratio 位 = l / R are discussed. The variation of fT (the ratio of the outer surface to the inner surface of the shell), etc. The numerical results show that the critical buckling temperature of functionally graded cylindrical shells increases with the increase of material gradient index, that is, the increase of ceramic composition. The dimensionless critical buckling temperature decreases with the increase of the ratio of thickness to diameter, but is not sensitive to the change of the ratio of length to diameter. The values of the heating parameters reflect the inhomogeneity of the temperature field. The larger the heating parameters are, the smaller the dimensionless critical buckling temperature is. The enhancement of boundary constraints will lead to the increase of critical buckling temperature, but with the increase of thick-diameter ratio, the effect of boundary constraints will weaken.
【學(xué)位授予單位】:揚(yáng)州大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:O342
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 朱昊文;李堯臣;楊昌錦;;功能梯度壓電材料板的有限元解[J];力學(xué)季刊;2005年04期
2 于濤;仲政;;均布荷載作用下功能梯度懸臂梁彎曲問(wèn)題的解析解[J];固體力學(xué)學(xué)報(bào);2006年01期
3 程紅梅;曹志遠(yuǎn);;復(fù)雜邊界條件功能梯度板三維分析的細(xì)觀元法[J];工程力學(xué);2006年12期
4 于濤;仲政;;功能梯度壓電懸臂梁的彎曲分析[J];中國(guó)科學(xué)G輯:物理學(xué)、力學(xué)、天文學(xué);2006年05期
5 郭麗芳;李星;;含有垂直于邊界的裂紋的功能梯度壓電條與功能梯度條粘結(jié)的靜態(tài)問(wèn)題[J];蘭州大學(xué)學(xué)報(bào)(自然科學(xué)版);2007年06期
6 曹志遠(yuǎn);唐壽高;程國(guó)華;;復(fù)雜形狀及開(kāi)孔功能梯度板的三維分析[J];應(yīng)用數(shù)學(xué)和力學(xué);2009年01期
7 程紅梅;曹志遠(yuǎn);沈曉明;;空隙分布對(duì)功能梯度板件宏觀響應(yīng)的影響[J];力學(xué)與實(shí)踐;2009年02期
8 程紅梅;曹志遠(yuǎn);;中等組分網(wǎng)狀結(jié)構(gòu)局部微變對(duì)功能梯度板三維動(dòng)力特性的影響[J];應(yīng)用力學(xué)學(xué)報(bào);2010年02期
9 李世榮;高穎;張靖華;;功能梯度與均勻圓板靜動(dòng)態(tài)解之間的相似轉(zhuǎn)換關(guān)系[J];固體力學(xué)學(xué)報(bào);2011年S1期
10 胡宇達(dá);張志強(qiáng);;熱環(huán)境中功能梯度圓形薄板的混沌運(yùn)動(dòng)[J];計(jì)算力學(xué)學(xué)報(bào);2012年02期
相關(guān)會(huì)議論文 前10條
1 丁皓江;楊博;陳偉球;;功能梯度板柱面彎曲的彈性力學(xué)解[A];第十五屆全國(guó)復(fù)合材料學(xué)術(shù)會(huì)議論文集(下冊(cè))[C];2008年
2 邊祖光;陳偉球;丁皓江;;單跨及多跨功能梯度板的柱形彎曲[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
3 尚爾濤;仲政;;均布荷載作用下功能梯度熱釋電材料矩形板的三維精確解[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
4 于濤;仲政;;功能梯度懸臂梁受復(fù)雜載荷作用問(wèn)題的解析解[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
5 賈尚帥;楊志安;;受機(jī)械力作用金屬/陶瓷功能梯度板的亞諧共振研究[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(9)[C];2007年
6 楊志安;賈尚帥;;受機(jī)械力作用金屬/陶瓷功能梯度板的非線性振動(dòng)模型[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(9)[C];2007年
7 楊志安;賈尚帥;;受機(jī)械力作用金屬/陶瓷功能梯度板的超諧共振研究[A];第六屆中國(guó)功能材料及其應(yīng)用學(xué)術(shù)會(huì)議論文集(9)[C];2007年
8 黎亮;章定國(guó);;作大范圍運(yùn)動(dòng)功能梯度矩形薄板的動(dòng)力學(xué)建模研究[A];第九屆全國(guó)動(dòng)力學(xué)與控制學(xué)術(shù)會(huì)議會(huì)議手冊(cè)[C];2012年
9 程紅梅;曹志遠(yuǎn);;具有不同材料組分細(xì)觀構(gòu)成的功能梯度板件的跨尺度動(dòng)力特性分析[A];慶祝中國(guó)力學(xué)學(xué)會(huì)成立50周年暨中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)’2007論文摘要集(下)[C];2007年
10 程站起;仲政;;功能梯度板條斷裂分析[A];中國(guó)力學(xué)學(xué)會(huì)學(xué)術(shù)大會(huì)'2005論文摘要集(下)[C];2005年
相關(guān)博士學(xué)位論文 前10條
1 史飛飛;功能梯度多層金屬板的沖擊行為研究[D];西北工業(yè)大學(xué);2015年
2 辛立彪;力熱磁電載荷作用下功能梯度厚壁圓筒的理論解[D];北京交通大學(xué);2017年
3 萬(wàn)澤青;熱機(jī)載荷作用下功能梯度曲梁和圓柱殼的靜態(tài)響應(yīng)[D];揚(yáng)州大學(xué);2016年
4 康穎安;功能梯度梁的靜動(dòng)態(tài)力學(xué)行為分析[D];中南大學(xué);2012年
5 李昊;功能梯度圓環(huán)/筒的彈性理論分析及其應(yīng)用[D];合肥工業(yè)大學(xué);2013年
6 毛貽齊;低速?zèng)_擊下?lián)p傷層合/功能梯度板殼的非線性動(dòng)力學(xué)研究[D];湖南大學(xué);2011年
7 劉靜;功能梯度涂層結(jié)構(gòu)的熱彈性接觸與動(dòng)態(tài)滑移穩(wěn)定性研究[D];北京交通大學(xué);2013年
8 張濤濤;功能梯度壓電微結(jié)構(gòu)力—電耦合特性分析[D];北京交通大學(xué);2008年
9 向宏軍;功能梯度壓電智能梁的特性分析及其應(yīng)用[D];北京交通大學(xué);2007年
10 李翔宇;橫觀各向同性功能梯度圓板和環(huán)板的軸對(duì)稱問(wèn)題[D];浙江大學(xué);2007年
相關(guān)碩士學(xué)位論文 前10條
1 陳野;基于不同梯度模式的功能梯度圓形彈性薄板的振動(dòng)特性[D];吉林大學(xué);2008年
2 羌煜皓;基于粉體脈沖微輸送的Ti/HA功能梯度結(jié)構(gòu)牙根植入材料制備方法研究[D];南京理工大學(xué);2015年
3 莫春美;厚/薄壓電功能梯度矩形板動(dòng)力分析的樣條無(wú)網(wǎng)格法[D];廣西大學(xué);2015年
4 趙文舉;功能梯度高階剪切梁有限元?jiǎng)恿μ匦苑治鯷D];廣西大學(xué);2015年
5 池明欣;功能梯度磁—電—彈板動(dòng)力響應(yīng)對(duì)材料參數(shù)的敏感度分析[D];湖南科技大學(xué);2015年
6 肖雄;WC-15%TiC-Co功能梯度硬質(zhì)合金刀具的摩擦磨損及切削性能研究[D];湖南科技大學(xué);2015年
7 俞劍俊;功能梯度板線性自由振動(dòng)有限元分析[D];揚(yáng)州大學(xué);2015年
8 張賀;功能梯度蜂窩建模與優(yōu)化設(shè)計(jì)方法研究[D];北京理工大學(xué);2016年
9 于凱;熱彈耦合功能梯度圓板的熱沖擊屈曲[D];蘭州理工大學(xué);2016年
10 孫冬艷;移動(dòng)荷載作用下功能梯度納米梁的動(dòng)態(tài)響應(yīng)[D];蘭州理工大學(xué);2016年
,本文編號(hào):2371453
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2371453.html