高維開放量子系統(tǒng)的非馬爾科夫動力學(xué)研究
[Abstract]:In recent years, non-Markov dynamics, which widely exist in open quantum systems, have attracted much attention. In general, the quantum non-Markov dynamics process is essentially an open system flow to the environment of the information reflow back to the system process. In the process of information reflow back system, some key physical quantities, such as entanglement and quantum trace distance, will oscillate. The study of non-Markov dynamics of open quantum systems is quite extensive. Previously, most studies on non-Markov dynamics were mainly confined to two-level systems, but the studies of high-dimensional quantum systems were rarely involved. However, high dimensional open systems, like two-level systems, are abundant in nature, and the use of high-dimensional quantum system coding can also enhance the security of quantum cryptography. Moreover, in quantum fault-tolerant computation and quantum error correction, high-dimensional quantum systems have incomparable advantages over two-level systems. In this paper, the non-Markov dynamics of several typical high-dimensional open quantum systems are studied. In the first chapter, we mainly introduce some basic knowledge about quantum information, open quantum system and quantum decoherence, including quantum trace distance, quantum entanglement and its measurement, quantum dynamic mapping, quantum separability. Markov master equation and non-Markov master equation, three typical quantum decoherence channels, etc. In the second chapter, we mainly introduce four typical measures of quantum non-Markov property. The first is based on quantum trace distance, the second is based on quantum entanglement, the third is based on quantum correlation, and the fourth is based on quantum separability. In chapter 3, a method for solving the non-Markov dynamics of multi-level V-type atoms with zero temperature wave color environment is presented. Special attention is paid to the entanglement evolution of three-level V-type atoms and their non-Markov properties. It is found that entanglement in the resonance region attenuates faster and the non-Markov property is weaker than that in the non-resonant region. More importantly, this chapter shows the non-Markov interference caused by different transmission channels, and points out the long interference region and interference cancellation region. In chapter 4, the entanglement evolution and non-Markov dynamics of spin S system in dephase environment are studied. The exact analytical expression shows that the decoherence function dominates the coherence evolution, entanglement evolution and non-Markov property in the dynamics of the spin S system. For ohmic heat reservoirs and YAOM heat reservoirs, the entanglement decays monotonously with time, and the corresponding dynamical processes are Markov processes. For the super-ohmic heat reservoir, the decoherence function is oscillating, which leads to the recovery of entanglement, and the corresponding dynamic process is a non-Markov process. At the end of this chapter, the relationship between non-Markov property and system dimension is also discussed. In the fifth chapter, we give a brief summary and prospect of this paper.
【學(xué)位授予單位】:湖南師范大學(xué)
【學(xué)位級別】:博士
【學(xué)位授予年份】:2016
【分類號】:O413
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 高山珍,李俊紅,解建軍;7維廣義馬爾科夫方程的解[J];貴州教育學(xué)院學(xué)報(自然科學(xué));2000年02期
2 高山珍,高靜偉;廣義馬爾科夫方程解的存在性[J];河北職業(yè)技術(shù)師范學(xué)院學(xué)報;2003年03期
3 蘇濤;詹原瑞;劉家鵬;李杰;;基于馬爾科夫轉(zhuǎn)換下的資本資產(chǎn)定價模型[J];系統(tǒng)管理學(xué)報;2007年03期
4 周丹;袁永博;;基于分類思想的灰色馬爾科夫建設(shè)用地預(yù)測[J];建筑經(jīng)濟(jì);2011年S1期
5 包景東;隨機(jī)振蕩中的非馬爾科夫效應(yīng)[J];自然雜志;1992年05期
6 李文清,曹力,吳大進(jìn);非馬爾科夫多值噪聲驅(qū)動下系統(tǒng)的平均第一通過時間[J];華中理工大學(xué)學(xué)報;1992年06期
7 包景東;軌道抽樣法研究非馬爾科夫熱激活過程[J];計算物理;1992年03期
8 楊春巍;馬爾科夫質(zhì)量控制模型[J];重慶建筑大學(xué)學(xué)報;1997年01期
9 曹昌祺;原子自發(fā)輻射的非馬爾科夫理論[J];量子光學(xué)學(xué)報;2002年S1期
10 劉丹紅,張世英,蘇為東;馬爾科夫轉(zhuǎn)換的資本資產(chǎn)定價模型及其最大似然估計[J];天津大學(xué)學(xué)報(社會科學(xué)版);2003年04期
相關(guān)會議論文 前2條
1 孫凱樂;於亞飛;張智明;;自旋系統(tǒng)中非馬爾科夫的研究[A];第十六屆全國量子光學(xué)學(xué)術(shù)報告會報告摘要集[C];2014年
2 曹昌祺;;原子自發(fā)輻射的非馬爾科夫理論[A];第十屆全國量子光學(xué)學(xué)術(shù)報告會論文論文集[C];2002年
相關(guān)重要報紙文章 前3條
1 記者 吳長鋒;時而馬爾科夫 時而非馬爾科夫[N];科技日報;2011年
2 本報駐俄羅斯記者 馬劍;“漂在石油上”的城市[N];人民日報;2006年
3 臧文茜;“橙色革命”如夢方醒烏民眾悲觀看待“聯(lián)合政府”[N];第一財經(jīng)日報;2006年
相關(guān)博士學(xué)位論文 前5條
1 李繁飆;半馬爾科夫跳變系統(tǒng)的分析和綜合[D];哈爾濱工業(yè)大學(xué);2015年
2 謝東;開放系統(tǒng)量子測量與控制的理論研究[D];中國科學(xué)技術(shù)大學(xué);2015年
3 范子龍;高維開放量子系統(tǒng)的非馬爾科夫動力學(xué)研究[D];湖南師范大學(xué);2016年
4 鄒紅梅;非馬爾科夫環(huán)境下量子系統(tǒng)的非經(jīng)典效應(yīng)[D];湖南師范大學(xué);2014年
5 龍少華;奇異時滯馬爾科夫系統(tǒng)的容許性問題研究[D];電子科技大學(xué);2013年
相關(guān)碩士學(xué)位論文 前10條
1 喬鐵;帶半馬爾科夫切換的隨機(jī)系統(tǒng)的指數(shù)穩(wěn)定性[D];鄭州大學(xué);2015年
2 柏久麟;馬爾科夫機(jī)制轉(zhuǎn)換混合頻率數(shù)據(jù)模型的應(yīng)用[D];中央民族大學(xué);2015年
3 朱璽;中文微博情感傾向性分析研究[D];哈爾濱工業(yè)大學(xué);2015年
4 佟杰;基于改進(jìn)的隱馬爾科夫體制轉(zhuǎn)換ARMA-GARCH模型的高頻數(shù)據(jù)預(yù)測[D];北京理工大學(xué);2015年
5 張雁雁;面向行人防碰撞預(yù)警的駕駛員駕駛意圖辨識方法研究[D];大連理工大學(xué);2015年
6 吳銹;隨機(jī)分紅策略下離散風(fēng)險模型的研究[D];重慶大學(xué);2015年
7 徐荇華;系統(tǒng)與環(huán)境的初始關(guān)聯(lián)對非馬爾科夫性的影響[D];北京理工大學(xué);2016年
8 喬轉(zhuǎn)轉(zhuǎn);用前饋控制方案保護(hù)在馬爾科夫和非馬爾科夫環(huán)境下的量子態(tài)[D];北京理工大學(xué);2016年
9 文可欽;具有時滯的馬爾科夫不確定參數(shù)隨機(jī)系統(tǒng)穩(wěn)定性分析[D];電子科技大學(xué);2013年
10 張盟;馬爾科夫調(diào)制跳擴(kuò)散模型下的歐式期權(quán)定價[D];蘇州大學(xué);2013年
,本文編號:2354439
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2354439.html