擬南芥微絲相關(guān)蛋白SCRP1調(diào)節(jié)氣孔運(yùn)動(dòng)的功能研究
[Abstract]:Microfilaments are a kind of filamentous network which is ubiquitous in eukaryotic cells and is always in the dynamic process of depolymerization. The dynamic changes of microfilaments in plants are involved in the regulation of many cell processes, such as cell division, cell morphogenesis, cell movement, cell polarity growth and so on. Recent studies have shown that the dynamic changes of microfilament skeleton are also involved in the regulation of plant responses to biotic and abiotic stresses. The dynamic changes of microfilaments in cells are regulated by various microfilament binding proteins and microfilament related factors. The switch movement of guard cells is an important regulation mechanism of plant response to external stimuli. The rearrangement of microfilaments in guard cells is involved in the regulation of the movement of guard cells. More and more studies have shown that the orientation of microfilaments, the thickness and density of filaments in guard cells are closely related to the opening of guard cells. However, we do not know much about the specific protein factors involved in the regulation of microfilaments in guard cells. In this paper, by using the method of forward genetics, a mutant scrp1. with fast loss of water was obtained by the experimental analysis of leaf water loss of T-DNA mutants ordered by ABRC. The mutant has T-DNA insertion into the Arabidopsis SCRP1 gene, resulting in a functional deletion of the SCRP1 gene. The SCRP1 gene encodes a silk / threonine protein kinase. Our results showed that the expression of SCRP1 gene was up-regulated by ABA, which was involved in the regulation of stomatal closure induced by ABA. SCRP1 was associated with microfilament protein and was colocated with microfilament protein in cells. It has the function of stabilizing the microfilaments in the guard cells and participates in the regulation of the dynamic changes of the microfilaments in the guard cells. However, SCRP1 does not directly bind to microfilament proteins and has no direct effect on the polymerization and depolymerization of microfilaments. We found that SCRP1 could interact with microfilament depolymerization factor ADF4, and phosphorylated ADF4, could inhibit the depolymerization activity of ADF4. The absence of SCRP1 resulted in fast water loss and slow response to ABA induced stomatal closure. The microfilaments in the stomata showed the phenotype of decreasing degree of repolymerization. At the same time, we also found that ADF4 functional deletion mutants were insensitive to water loss stress and ABA treatment, and the microfilament aggregation in stomata was serious. The stomatal closure phenotype of ADF4 overexpression transgenic plants was similar to that of scrp1 mutant. Both showed that stomatal closure was insensitive to ABA treatment. Knockout of ADF4 in the background of scrp1 mutants could partially restore the phenotype of fast water loss of scrp1 mutants and delayed stomatal closure after ABA treatment. Our results show that SCRP1 is involved in the regulation of the dynamic changes of microfilaments during stomatal closure, which is achieved by interacting with ADF4 and phosphorylating ADF4, to inhibit the depolymerization activity of ADF4 microfilaments. The main innovation points and significance of this paper are as follows: 1. Previous studies have shown that microfilament depolymerization factor (ADF) is a major type of microfilament depolymerizing protein, and its activity is regulated by phosphorylation, but there are few phosphokinase known to phosphorylate ADF in Arabidopsis thaliana. This paper reports for the first time that SCRP1 can also phosphorylate ADF, which is of great significance for exploring the function of ADF. 2. Little is known about kinases that regulate the dynamics of microfilaments in guard cells. SCRP1, as a new type of microfilament-associated phosphokinase, has been reported for the first time to inhibit the depolymerization of ADF microfilaments by phosphorylated ADF,. Adjust the dynamic change of microfilament, thus adjust the stomatal movement. This is an important contribution to the study of how plant cytoskeleton responds to external signal stimuli by regulating the movement of guard cells.
【學(xué)位授予單位】:山東師范大學(xué)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2016
【分類號(hào)】:Q945
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 后橫;;微絲動(dòng)力學(xué)很多問(wèn)題但很少答案[J];國(guó)外醫(yī)學(xué)情報(bào);1988年05期
2 楊坤,王琦,李艷紅;植物微絲骨架研究進(jìn)展[J];首都師范大學(xué)學(xué)報(bào)(自然科學(xué)版);2004年S1期
3 安美文,吳文周,陳維毅,曲華,滕維中;基于微絲主動(dòng)收縮的細(xì)胞分裂的力學(xué)模型[J];力學(xué)學(xué)報(bào);2005年03期
4 買霞,陳莉,徐瑞成;微絲在體外培養(yǎng)四種不同細(xì)胞表達(dá)的形態(tài)觀察[J];武警醫(yī)學(xué)院學(xué)報(bào);2005年02期
5 邢艷麗;李靜;耿美玉;;細(xì)胞遷移中微絲微管的變化及其信號(hào)轉(zhuǎn)導(dǎo)通路研究進(jìn)展[J];現(xiàn)代生物醫(yī)學(xué)進(jìn)展;2007年06期
6 邱鴻;于榮;;微管和微絲的相互作用[J];細(xì)胞生物學(xué)雜志;2009年04期
7 陳瓊;黃善金;于榮;;植物微絲骨架動(dòng)態(tài)變化的調(diào)節(jié)[J];植物生理學(xué)報(bào);2011年01期
8 許萍,,張丕方;微絲骨架的研究進(jìn)展[J];植物學(xué)通報(bào);1995年S1期
9 雷宇華,閆芝芬,嚴(yán)玉平,魏建昆;微絲骨架與信號(hào)轉(zhuǎn)導(dǎo)研究進(jìn)展[J];華北農(nóng)學(xué)報(bào);2000年01期
10 劉俊梅,李巖,張紅;銀杏花粉的萌發(fā)及其內(nèi)部微絲骨架骨的研究[J];農(nóng)業(yè)生物技術(shù)學(xué)報(bào);2001年04期
相關(guān)會(huì)議論文 前10條
1 陳建國(guó);;微絲與細(xì)胞行為[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)第十屆全體會(huì)員代表大會(huì)暨第十二次學(xué)術(shù)大會(huì)論文集[C];2011年
2 王端順;徐淑惠;胡云英;馬躍;孫惟東;汪X仁;;鈣調(diào)素拮抗劑——三氟啦嗪對(duì)微絲組裝的響影[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)第五次會(huì)議論文摘要匯編[C];1992年
3 彭雄波;孫蒙祥;楊弘遠(yuǎn);;高等植物受精卵中精核的遷移依賴于微絲而不依賴于微管[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)2005年學(xué)術(shù)大會(huì)、青年學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
4 趙和平;任海云;;Rop1Ps對(duì)百合花粉管生長(zhǎng)和微絲骨架排列的影響[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)第八屆會(huì)員代表大會(huì)暨學(xué)術(shù)大會(huì)論文摘要集[C];2003年
5 樊小雪;向云;任海云;;擬南芥鈣依賴性微絲結(jié)合蛋白AtABP41的分離純化與特性分析[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)2005年學(xué)術(shù)大會(huì)、青年學(xué)術(shù)研討會(huì)論文摘要集[C];2005年
6 彭雄波;嚴(yán)婷婷;孫蒙祥;;高等植物受精后精核遷移依賴于微絲而不依賴于微管[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)第九次會(huì)員代表大會(huì)暨青年學(xué)術(shù)大會(huì)論文摘要集[C];2007年
7 黃豈平;蔡紹皙;石宇;向昆侖;;基底應(yīng)變可通過(guò)改變微絲骨架的張力調(diào)節(jié)Rho蛋白活性[A];第十次中國(guó)生物物理學(xué)術(shù)大會(huì)論文摘要集[C];2006年
8 邵陽(yáng)光;;細(xì)胞骨架[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)第十屆全體會(huì)員代表大會(huì)暨第十二次學(xué)術(shù)大會(huì)論文集[C];2011年
9 尹力;柳惠圖;王端順;;微絲聚合的改變對(duì)PIP_2及DG水平的影響[A];中國(guó)細(xì)胞生物學(xué)學(xué)會(huì)第五次會(huì)議論文摘要匯編[C];1992年
10 胡適宜;李春貴;;用鬼筆環(huán)肽予處理保存花粉管中微絲超微結(jié)構(gòu)的方法[A];海峽兩岸電子顯微學(xué)討論會(huì)論文專集[C];1991年
相關(guān)重要報(bào)紙文章 前5條
1 仙本明;生產(chǎn)不銹鋼微絲的前景分析[N];中國(guó)建材報(bào);2006年
2 仙本明;山東兗礦水泥廠不銹鋼微絲生產(chǎn)線投產(chǎn)[N];中國(guó)建材報(bào);2006年
3 劉德君 李榮霞;盂縣不銹鋼微絲項(xiàng)目填補(bǔ)省內(nèi)空白[N];陽(yáng)泉日?qǐng)?bào);2011年
4 江水;小企業(yè)名品占領(lǐng)大市場(chǎng)[N];江蘇經(jīng)濟(jì)報(bào);2006年
5 本報(bào)記者 毛慶 通訊員 張小華 郭禮華 實(shí)習(xí)生 韓斌;區(qū)里來(lái)了大學(xué)教授管科技[N];南京日?qǐng)?bào);2010年
相關(guān)博士學(xué)位論文 前10條
1 張城;NudC在微絲骨架動(dòng)態(tài)變化和纖毛組裝過(guò)程中的作用及調(diào)控機(jī)制研究[D];浙江大學(xué);2015年
2 趙雙雙;擬南芥微絲相關(guān)蛋白SCRP1調(diào)節(jié)氣孔運(yùn)動(dòng)的功能研究[D];山東師范大學(xué);2016年
3 陳東明;熔體抽拉非晶微絲磁疇調(diào)控及其與GMI效應(yīng)相關(guān)性[D];哈爾濱工業(yè)大學(xué);2015年
4 時(shí)蘭春;微絲、微管骨架在擬南芥細(xì)胞機(jī)械響應(yīng)中的作用[D];重慶大學(xué);2011年
5 賈紅磊;植物特有微絲交聯(lián)蛋白-CROLIN1的功能研究[D];蘭州大學(xué);2013年
6 樊婷婷;擬南芥微絲結(jié)合蛋白Profilin3體內(nèi)生理功能研究[D];蘭州大學(xué);2012年
7 施海帆;擬南芥RIC1切割微絲調(diào)控細(xì)胞頂端生長(zhǎng)的機(jī)制研究[D];中國(guó)農(nóng)業(yè)大學(xué);2015年
8 程云會(huì);血管平滑肌細(xì)胞SM22α的表達(dá)調(diào)節(jié)及其功能研究[D];河北醫(yī)科大學(xué);2004年
9 趙楊勇;玻璃包覆法制備Cu-Sn和Ni-Mn-Ga形狀記憶微絲及其超彈性研究[D];北京科技大學(xué);2015年
10 安美文;真核細(xì)胞分裂過(guò)程中生化刺激與力學(xué)行為的耦合作用[D];太原理工大學(xué);2005年
相關(guān)碩士學(xué)位論文 前10條
1 趙群;胞質(zhì)微絲構(gòu)架對(duì)有絲分裂紡錘體可塑性調(diào)控機(jī)制研究[D];中國(guó)科學(xué)技術(shù)大學(xué);2014年
2 王坤;用于植入式神經(jīng)接口的微絲電極陣列的研制與改性研究[D];中國(guó)人民解放軍軍事醫(yī)學(xué)科學(xué)院;2016年
3 柯文俊;考慮微絲作用的細(xì)胞建模及細(xì)胞偽足的模擬[D];華南理工大學(xué);2016年
4 王瑩;芽再生過(guò)程中微絲骨架通過(guò)調(diào)節(jié)生長(zhǎng)素的極性運(yùn)輸影響干細(xì)胞的再生[D];山東農(nóng)業(yè)大學(xué);2013年
5 陳艷梅;白gD花粉管微絲骨架介導(dǎo)信號(hào)傳導(dǎo)的蛋白質(zhì)組學(xué)研究[D];中國(guó)科學(xué)院研究生院(植物研究所);2005年
6 曾晶;微絲相關(guān)的微囊藻毒素毒性機(jī)理研究[D];寧波大學(xué);2013年
7 趙艷;雜交鵝掌楸懸浮培養(yǎng)體細(xì)胞的微絲骨架變化[D];南京林業(yè)大學(xué);2010年
8 李寶龍;基于找形分析的細(xì)胞骨架力學(xué)模型[D];上海交通大學(xué);2013年
9 張姣;小麥生理型雄性不育系花藥細(xì)胞內(nèi)微絲骨架和胼胝質(zhì)的變化及其相關(guān)基因的表達(dá)分析[D];西北農(nóng)林科技大學(xué);2015年
10 張小清;一種水稻微絲結(jié)合蛋白OsFH1的功能研究[D];上海師范大學(xué);2014年
本文編號(hào):2315586
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2315586.html