旋量玻色—愛因斯坦凝聚體中的拓?fù)浼ぐl(fā)研究
[Abstract]:The realization of Bose-Einstein condensate (BEC) has rapidly promoted the rapid development of ultra-cold atoms and cold molecular physics. Bec has unique macroscopic quantum coherence properties and artificial controllability. It not only makes it a basic experimental platform for testing quantum multi-body physics, but also provides a universal simulation platform for condensed matter calculation and nonlinear science. In recent years, with the application of new techniques and methods in experiments, the exploration of novel and topological quantum states in BEC has become a hot topic in international research. In this paper, we will mainly discuss the topological excitation in spinor Bose-Einstein condensates, including the mean field theory of spinor BEC, the symmetry classification of spinor order parametric manifolds. The basic theory of topological excitation and numerical study of topological excitation in spinor BEC. The first chapter mainly elaborates the related theory foundation of BEC. Firstly, the history of Bose-Einstein condensation is reviewed. Then the basic theories of ideal Bose-Einstein condensate and interacting Bose-Einstein condensate are briefly introduced. Finally, the theory of two-body scattering is introduced, the physical meaning of scattering length is discussed, and the common method of controlling scattering length is introduced, which is called Feshbach resonance. In chapter 2, the second quantization theory of spinor BEC with interaction is introduced, and the Hamiltonian of spinor BEC with spin 1, spin 2 and spin 3 is calculated, respectively. Then, by using the mean field theory, the Gross-Pitaevskii equations of spin 1 and spin 2 spinor BEC are obtained. The possible ground states of the consistent system of spin 1 and spin 2 are discussed, and the phase diagrams under certain parameters are given. In chapter 3, the concept of BEC's ordered parametric manifold is introduced by using the knowledge of group theory and differential manifold, and then the method of finding ground state by symmetry is introduced, and the possible ground states of spin 1 and spin 2 systems are classified by this method, respectively. Finally, the homotopy theory of topological classification is briefly introduced. By using the homotopy theory, the possible types of topological excitations in various spinor ordered parametric manifolds are analyzed, and two kinds of topological excitations, vortex and Skyrmion, are discussed in particular. In chapter 4, the effects of spin-orbit coupling on the system in two-component rotating BEC are discussed. It is found that spin-orbit coupling can induce hyperbolic Skyrmion. In different regions of interaction, the influence of spin-orbit coupling on Skyrmion is different. Then the three-component rotational BEC, of spin 1 is discussed and it is found that the spin-orbit coupling induces semi-skyrmion and three-vortex structures. Finally, it is discussed that the rotating BEC, of in-plane quadrupole magnetic field can lead to the generation of central Mermin-Ho vortex by the interaction of in-plane quadrupole magnetic field and rotation, and there are two topologies of hyperbolic meron and semi-skyrmion in the spin structure.
【學(xué)位授予單位】:中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院物理研究所)
【學(xué)位級(jí)別】:博士
【學(xué)位授予年份】:2017
【分類號(hào)】:O469
【相似文獻(xiàn)】
相關(guān)期刊論文 前10條
1 王運(yùn)漢;;旋量及其應(yīng)用[J];海南大學(xué)學(xué)報(bào)(自然科學(xué)版);1985年04期
2 時(shí)萬(wàn)鐘;;高維理論中的旋量[J];河南科學(xué);1988年02期
3 王政之;五}攵葔徚獇a空晸和非}訶4方程式[J];山東大學(xué)學(xué)報(bào)(自然科學(xué)版);1964年04期
4 趙德龍;剛體力學(xué)的旋量分析方法[J];教學(xué)與研究;1986年00期
5 楊學(xué)恒,劉之愓;真空漲落與基本粒子構(gòu)成[J];科學(xué)通報(bào);1986年11期
6 葛旭初;電荷的二旋量理論[J];長(zhǎng)沙水電師院學(xué)報(bào)(自然科學(xué)版);1986年01期
7 葛旭初;電子的縱向極化和粒子的電荷二旋量理論[J];長(zhǎng)沙水電師院學(xué)報(bào)(自然科學(xué)版);1986年02期
8 葛旭初;;蓋爾曼—西島法則與粒子的電荷二旋量理論[J];衡陽(yáng)師專學(xué)報(bào)(自然科學(xué));1987年01期
9 何宜軍,楊銓讓;斜入射時(shí)孔徑衍射旋量理論[J];光學(xué)學(xué)報(bào);1992年10期
10 萬(wàn)明芳,邵常貴;有撓的旋量引力規(guī)范理論[J];湖北大學(xué)學(xué)報(bào)(自然科學(xué)版);1992年03期
相關(guān)會(huì)議論文 前1條
1 丁希侖;李可佳;徐坤;;基于旋量理論的彈性關(guān)節(jié)六腿機(jī)器人動(dòng)力學(xué)分析[A];2011年中國(guó)智能自動(dòng)化學(xué)術(shù)會(huì)議論文集(第一分冊(cè))[C];2011年
相關(guān)博士學(xué)位論文 前5條
1 陳慶誠(chéng);結(jié)合旋量理論的串聯(lián)機(jī)器人運(yùn)動(dòng)特性分析及運(yùn)動(dòng)控制研究[D];浙江大學(xué);2015年
2 陳華;基于雅克比旋量模型的三維公差分析方法研究及在發(fā)動(dòng)機(jī)裝配中的應(yīng)用[D];上海交通大學(xué);2015年
3 李甜甜;偶極旋量玻色—愛因斯坦凝聚體中的耦合自旋渦旋對(duì)[D];山西大學(xué);2016年
4 劉靜思;旋量玻色—愛因斯坦凝聚體中的拓?fù)浼ぐl(fā)研究[D];中國(guó)科學(xué)院大學(xué)(中國(guó)科學(xué)院物理研究所);2017年
5 朱琳;雙旋量[D];蘇州大學(xué);2006年
相關(guān)碩士學(xué)位論文 前8條
1 盧宏琴;基于旋量理論的機(jī)器人運(yùn)動(dòng)學(xué)和動(dòng)力學(xué)研究及其應(yīng)用[D];南京航空航天大學(xué);2007年
2 王科;基于旋量和李群李代數(shù)的SCARA工業(yè)機(jī)器人研究[D];浙江大學(xué);2010年
3 邵新光;基于旋量理論的多自由度機(jī)構(gòu)振動(dòng)特性研究[D];燕山大學(xué);2014年
4 孫婧昕;激光催化自旋為1的旋量BEC的磁疇形成研究[D];河南師范大學(xué);2014年
5 潘國(guó)文;帶有塞曼項(xiàng)的1-維旋量BEC方程組的解析解[D];蘭州大學(xué);2012年
6 李闖;二次塞曼效應(yīng)下旋量玻色—愛因斯坦凝聚體動(dòng)力學(xué)的研究[D];河北工業(yè)大學(xué);2014年
7 徐愛婷;光晶格中旋量BEC的動(dòng)力學(xué)性質(zhì)[D];華東師范大學(xué);2009年
8 呼艷生;超冷堿金屬原子體系的磁性特征研究[D];太原理工大學(xué);2015年
,本文編號(hào):2251232
本文鏈接:http://sikaile.net/shoufeilunwen/jckxbs/2251232.html